Huigang Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/4656451/huigang-zhang-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 96
 6,206
 30
 78

 papers
 citations
 h-index
 g-index

 104
 7,285
 10.8
 5.98

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
96	Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. <i>Nature Communications</i> , 2013 , 4, 1543	17.4	978
95	Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. <i>Nature Nanotechnology</i> , 2011 , 6, 277-81	28.7	940
94	One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties. <i>Advanced Functional Materials</i> , 2007 , 17, 2766-2771	15.6	481
93	High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. <i>Nature Communications</i> , 2013 , 4, 1732	17.4	449
92	Multifunctional Co 3 S 4 @sulfur nanotubes for enhanced lithium-sulfur battery performance. <i>Nano Energy</i> , 2017 , 37, 7-14	17.1	254
91	Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. <i>Nano Letters</i> , 2012 , 12, 2778-83	11.5	229
90	Fabrication of beta-Ni(OH)2 and NiO hollow spheres by a facile template-free process. <i>Chemical Communications</i> , 2005 , 5231-3	5.8	224
89	Nitrogen-Doped CoP Electrocatalysts for Coupled Hydrogen Evolution and Sulfur Generation with Low Energy Consumption. <i>Advanced Materials</i> , 2018 , 30, e1800140	24	224
88	Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. <i>Nature Communications</i> , 2019 , 10, 1896	17.4	150
87	High power rechargeable batteries. Current Opinion in Solid State and Materials Science, 2012, 16, 186-1	982	145
86	e occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. <i>Nature Communications</i> , 2019 , 10, 704	17.4	112
85	Interlayer Lithium Plating in Au Nanoparticles Pillared Reduced Graphene Oxide for Lithium Metal Anodes. <i>Advanced Functional Materials</i> , 2018 , 28, 1804133	15.6	105
84	Rational Design of a NiN Electrocatalyst to Accelerate Polysulfide Conversion in Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2020 , 14, 6673-6682	16.7	103
83	Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes. <i>ACS Nano</i> , 2015 , 9, 1985-94	16.7	103
82	Electrochemically tunable thermal conductivity of lithium cobalt oxide. <i>Nature Communications</i> , 2014 , 5, 4035	17.4	92
81	Morphologically Controlled Synthesis of Hydroxyapatite with Partial Substitution of Fluorine. <i>Chemistry of Materials</i> , 2005 , 17, 5824-5830	9.6	81
80	3D Scaffolded Nickel-Tin Li-Ion Anodes with Enhanced Cyclability. <i>Advanced Materials</i> , 2016 , 28, 742-7	24	80

(2021-2018)

79	Biomimetic Bipolar Microcapsules Derived from Staphylococcus aureus for Enhanced Properties of LithiumBulfur Battery Cathodes. <i>Advanced Energy Materials</i> , 2018 , 8, 1702373	21.8	77
78	Efficient Ni2Co4P3 Nanowires Catalysts Enhance Ultrahigh-Loading LithiumBulfur Conversion in a Microreactor-Like Battery. <i>Advanced Functional Materials</i> , 2020 , 30, 1906661	15.6	77
77	Gas-sensing properties of hollow and hierarchical copper oxide microspheres. <i>Sensors and Actuators B: Chemical</i> , 2007 , 128, 293-298	8.5	71
76	Fabrication and magnetic properties of hierarchical porous hollow nickel microspheres. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1212		65
75	Stable and conductive lead halide perovskites facilitated by X-type ligands. <i>Nanoscale</i> , 2017 , 9, 7252-72	2.5 /9 .7	55
74	Hydrothermal fabrication of three-dimensional secondary battery anodes. <i>Advanced Materials</i> , 2014 , 26, 7096-101	24	46
73	Electroplating lithium transition metal oxides. Science Advances, 2017, 3, e1602427	14.3	45
72	Carbon Nanotube@RuO as a High Performance Catalyst for Li-CO Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 5146-5151	9.5	45
71	Enhanced synergistic catalysis by a novel triple-phase interface design of NiO/Ru@Ni for the hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 2344-2350	13	43
70	Structure design of NiCo2O4 electrodes for high performance pseudocapacitors and lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17394-17402	13	40
69	Mechanochemicalflydrothermal synthesis and characterization of fluoridated hydroxyapatite. <i>Materials Research Bulletin</i> , 2005 , 40, 1326-1334	5.1	37
68	Novel Co VO Anodes Using Ultralight 3D Metallic Current Collector and Carbon Sandwiched Structures for High-Performance Li-Ion Batteries. <i>Small</i> , 2017 , 13, 1701260	11	36
67	Carbon-Free O Cathode with Three-Dimensional Ultralight Nickel Foam-Supported Ruthenium Electrocatalysts for Li-O Batteries. <i>ChemSusChem</i> , 2017 , 10, 2714-2719	8.3	31
66	Template-assisted three-dimensional nanolithography via geometrically irreversible processing. <i>Nano Letters</i> , 2009 , 9, 4424-7	11.5	30
65	Electrodeposition Technologies for Li-Based Batteries: New Frontiers of Energy Storage. <i>Advanced Materials</i> , 2020 , 32, e1903808	24	28
64	Porous-Nickel-Scaffolded Tin-Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries. <i>ACS Applied Materials & Enhanced Electrochemical Properties for Li/Na-Ion Batteries.</i>	9.5	27
63	Synergistic effect of ultrafine nano-Ru decorated cobalt carbonate hydroxides nanowires for accelerated alkaline hydrogen evolution reaction. <i>Electrochimica Acta</i> , 2020 , 331, 135367	6.7	27
62	Hammett Relationship in Oxidase-Mimicking Metal-Organic Frameworks Revealed through a Protein-Engineering-Inspired Strategy. <i>Advanced Materials</i> , 2021 , 33, e2005024	24	27

61	Engineering Polymer Glue towards 90% Zinc Utilization for 1000 Hours to Make High-Performance Zn-Ion Batteries. <i>Advanced Functional Materials</i> ,2107652	15.6	27
60	In situ surface engineering of nickel inverse opal for enhanced overall electrocatalytic water splitting. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 14873-14880	13	26
59	Highly enhanced durability of a graphitic carbon layer decorated PtNi alloy electrocatalyst toward the oxygen reduction reaction. <i>Chemical Communications</i> , 2019 , 55, 5693-5696	5.8	26
58	Oxygen-Deficient Ferric Oxide as an Electrochemical Cathode Catalyst for High-Energy Lithium-Sulfur Batteries. <i>Small</i> , 2020 , 16, e2000870	11	26
57	(Co/Fe)4O4 Cubane-Containing Nanorings Fabricated by Phosphorylating Cobalt Ferrite for Highly Efficient Oxygen Evolution Reaction. <i>ACS Catalysis</i> , 2019 , 9, 3878-3887	13.1	25
56	Fabrication and structural optimization of porous single-crystal Fe2O3 microrices for high-performance lithium-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16544-16550	13	25
55	Surfactant-assisted preparation of fluoride-substituted hydroxyapatite nanorods. <i>Materials Letters</i> , 2005 , 59, 3054-3058	3.3	24
54	A Self-Healing Flexible Quasi-Solid Zinc-Ion Battery Using All-In-One Electrodes. <i>Advanced Science</i> , 2021 , 8, 2004689	13.6	23
53	Preparation of porous hydroxyapatite with interconnected pore architecture. <i>Journal of Materials Science: Materials in Medicine</i> , 2007 , 18, 1825-9	4.5	20
52	General Metal-Ion Mediated Method for Functionalization of Graphene Fiber. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 37022-37030	9.5	19
51	Multiple-interface relay catalysis: Enhancing alkaline hydrogen evolution through a combination of Volmer promoter and electrical-behavior regulation. <i>Chemical Engineering Journal</i> , 2020 , 397, 125457	14.7	18
50	Selected-control synthesis of hierarchical nickel structures. <i>Materials Research Bulletin</i> , 2007 , 42, 1450-1	14;5:6	16
49	Electrochemical Fabrication of Monolithic Electrodes with Core/Shell Sandwiched Transition Metal Oxide/Oxyhydroxide for High-Performance Energy Storage. <i>ACS Applied Materials & Company Comp</i>	9.5	16
48	In operando plasmonic monitoring of electrochemical evolution of lithium metal. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 11168-11173	11.5	16
47	Aliovalent fluorine doping and anodization-induced amorphization enable bifunctional catalysts for efficient water splitting. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 10831-10838	13	15
46	Interfacial design principle of sodiophilicity-regulated interlayer deposition in a sandwiched sodium metal anode. <i>Energy Storage Materials</i> , 2020 , 31, 221-229	19.4	15
45	Preparation of fluoride-substituted hydroxyapatite by a molten salt synthesis route. <i>Journal of Materials Science: Materials in Medicine</i> , 2006 , 17, 691-5	4.5	15
44	High-performance Li-ion Sn anodes with enhanced electrochemical properties using highly conductive TiN nanotubes array as a 3D multifunctional support. <i>Journal of Power Sources</i> , 2017 , 360, 189-195	8.9	14

43	Micromechanical devices with controllable stiffness fabricated from regular 3D porous materials. Journal of Micromechanics and Microengineering, 2014 , 24, 105006	2	14
42	Low Interface Energies Tune the Electrochemical Reversibility of Tin Oxide Composite Nanoframes as Lithium-Ion Battery Anodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 36892-36901	9.5	14
41	Glutamic Acid-mediated Synthesis of Ultralong Hydroxyapatite Nanoribbons under Hydrothermal Conditions. <i>Chemistry Letters</i> , 2005 , 34, 788-789	1.7	13
40	A hollow Co2SiO4 nanosheet Li-ion battery anode with high electrochemical performance and its dynamic lithiation/delithiation using in situ transmission electron microscopy technology. <i>Applied Surface Science</i> , 2019 , 490, 510-515	6.7	12
39	In Situ Tuning of Defects and Phase Transition in Titanium Dioxide by Lithiothermic Reduction. <i>ACS Applied Materials & Discourt & Discourt Materials & Discourt Materials & Discourt & Di</i>	9.5	12
38	A novel ternary sulfur/carbon@tin dioxide composite with polysulfides-adsorptive shell and conductive core as high-performance lithium-sulfur battery cathodes. <i>Applied Surface Science</i> , 2019 , 489, 462-469	6.7	11
37	SYNTHESIS OF NANOSPHERICAL AND ULTRALONG FIBROUS HYDROXYAPATITE AND REINFORCEMENT OF BIODEGRADABLE CHITOSAN/HYDROXYAPATITE COMPOSITE. <i>Modern Physics Letters B</i> , 2009 , 23, 3967-3976	1.6	11
36	Low-cost synthesis of hollow Cu2O octahedra with more than one shell. <i>Materials Letters</i> , 2007 , 61, 45	08 ;.4 51	1 11
35	Ultra-flexible lithium ion batteries fabricated by electrodeposition and solvothermal synthesis. <i>Electrochimica Acta</i> , 2017 , 237, 119-126	6.7	10
34	Electronic modulation of nickel phosphide by iron doping and its assembly on a graphene framework for efficient electrocatalytic water oxidation. <i>Journal of Alloys and Compounds</i> , 2020 , 824, 153913	5.7	10
33	Hydrogel assisted synthesis of Li3V2(PO4)3 composite as high energy density and low-temperature stable secondary battery cathode. <i>Journal of Alloys and Compounds</i> , 2018 , 739, 837-847	5.7	10
32	Sulfophobic and Vacancy Design Enables Self-Cleaning Electrodes for Efficient Desulfurization and Concurrent Hydrogen Evolution with Low Energy Consumption. <i>Advanced Functional Materials</i> , 2021 , 31, 2101922	15.6	10
31	Data-informed discovery of hydrolytic nanozymes <i>Nature Communications</i> , 2022 , 13, 827	17.4	9
30	Engineering Two-Dimensional Metal-Organic Framework on Molecular Basis for Fast Li Conduction. <i>Nano Letters</i> , 2021 , 21, 5805-5812	11.5	9
29	A metal organic foam-derived multi-layered and porous copper sulfide scaffold as sulfur host with multiple shields for preventing shuttle effect in lithium-sulfur batteries. <i>Electrochimica Acta</i> , 2020 , 356, 136853	6.7	8
28	A novel wheel-confined composite as cathode in Li-S batteries with high capacity retention. <i>Journal of Alloys and Compounds</i> , 2019 , 776, 504-510	5.7	8
27	General Liquid-Driven Coaxial Flow Focusing Preparation of Novel Microcapsules for Rechargeable Magnesium Batteries. <i>Advanced Science</i> , 2021 , 8, 2002298	13.6	8
26	A novel tin hybrid nano-composite with double nets of carbon matrixes as a stable anode in lithium ion batteries. <i>Chemical Communications</i> , 2017 , 53, 13125-13128	5.8	7

25	A Lamellar Yolk-Shell Lithium-Sulfur Battery Cathode Displaying Ultralong Cycling Life, High Rate Performance, and Temperature Tolerance. <i>Advanced Science</i> , 2021 , 9, e2103517	13.6	7
24	A yolk-shell FeO@void@carbon nanochain as shuttle effect suppressive and volume-change accommodating sulfur host for long-life lithium-sulfur batteries. <i>Nanoscale</i> , 2021 , 13, 7744-7750	7.7	6
23	A Polysulfides-Confined All-in-One Porous Microcapsule Lithium-Sulfur Battery Cathode. <i>Small</i> , 2021 , 17, e2103051	11	6
22	A novel sulfur@void@hydrogel yolk-shell particle with a high sulfur content for volume-accommodable and polysulfide-adsorptive lithium-sulfur battery cathodes. <i>Nanotechnology</i> , 2020 , 31, 455402	3.4	5
21	Renewable Polysulfide Regulation by Versatile Films toward High-Loading Lithium-Sulfur Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 12, 47590-47598	9.5	5
20	Sb@SNII nanocomposite as long-cycle stable anode material for lithium ion batteries. <i>Journal of Alloys and Compounds</i> , 2020 , 814, 152161	5.7	5
19	Transferring Liquid Metal to form a Hybrid Solid Electrolyte via a Wettability-Tuning Technology for Lithium Metal Anodes <i>Advanced Materials</i> , 2022 , e2200181	24	4
18	Silicon Quantum Dots Induce Uniform Lithium Plating in a Sandwiched Metal Anode. <i>ChemElectroChem</i> , 2020 , 7, 2026-2032	4.3	3
17	ZIF-derived ZnO/Sb composite scaffolded on carbon framework for Ni-Zn batteries. <i>Journal of Colloid and Interface Science</i> , 2020 , 579, 823-831	9.3	3
16	Greener and higher conversion of esterification via interfacial photothermal catalysis. <i>Nature Sustainability</i> ,	22.1	3
15	Synergistic Role of Eg Filling and Anion Cation Hybridization in Enhancing the Oxygen Evolution Reaction Activity in Nickelates. <i>ACS Applied Energy Materials</i> ,	6.1	3
14	CoSe2/MoS2 Heterostructures to Couple Polysulfide Adsorption and Catalysis in Lithium-Sulfur Batteries [Chinese Journal of Chemistry, 2021, 39, 1138-1144]	4.9	3
13	A Self-Healing LithiumBulfur Battery Using Gel-Infilled Microcapsules. <i>ACS Applied Energy Materials</i> , 2021 , 4, 6749-6756	6.1	3
12	Self-reduction preparation of porous multi-walled ZnCo2O4 spheres as sulfur host for lithium-sulfur battery cathodes with long cycling life and stable rate-performance. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 880, 114860	4.1	3
11	In Situ Formation of Polycyclic Aromatic Hydrocarbons as an Artificial Hybrid Layer for Lithium Metal Anodes <i>Nano Letters</i> , 2021 ,	11.5	3
10	Three-Dimensionally Scaffolded Hydrogel@Sulfur Composite as a Binder-Free Polysulfides-Adsorptive Cathode for High-Performance Lithium-Sulfur Batteries. <i>Energy Technology</i> , 2019 , 7, 1801158	3.5	2
9	An artificial sea urchin with hollow spines: improved mechanical and electrochemical stability in high-capacity Li-Ge batteries. <i>Nanoscale</i> , 2020 , 12, 5812-5816	7.7	2
8	A novel ultrathin single-crystalline Bi2O3 nanosheet wrapped by reduced graphene oxide with improved electron transfer for Li storage. <i>Journal of Solid State Electrochemistry</i> , 2020 , 24, 2487-2497	2.6	2

LIST OF PUBLICATIONS

7	A bee pupa-infilled honeycomb structure-inspired LiMnSiO cathode for high volumetric energy density secondary batteries. <i>Chemical Communications</i> , 2019 , 55, 3582-3585	5.8	2
6	A General Template-Induced Sulfuration Approach for Preparing Bifunctional Hollow Sulfides for High-Performance Al- and Li-ion Batteries. <i>Energy Technology</i> , 2021 , 9, 2000900	3.5	2
5	A novel nanosphere-in-nanotube iron phosphide Li-ion battery anode displaying a long cycle life, recoverable rate-performance, and temperature tolerance. <i>Nanoscale</i> , 2021 , 13, 15624-15630	7.7	2
4	Query expansion for VHR image detection 2011 ,		1
3	Engineering a novel microcapsule of CuS core and SnS quantum dot/carbon nanotube shell as a Li-ion battery anode. <i>Chemical Communications</i> , 2021 , 57, 13397-13400	5.8	1
2	Novel Doughnutlike Graphene Quantum Dot-Decorated Composites for High-Performance Liß Batteries Displaying Dual Immobilization Toward Polysulfides. <i>ACS Applied Energy Materials</i> , 2021 , 4, 10998-11003	6.1	1
1	Engineering Nanostructured Silicon and its Practical Applications in Lithium-Ion Batteries: A Critical Review. <i>Energy Technology</i> , 2021 , 9, 2100400	3.5	1