
Dae-Hyeong Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4656275/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Epidermal Electronics. Science, 2011, 333, 838-843.	12.6	3,944
2	Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Materials, 2010, 9, 511-517.	27.5	1,501
3	Stretchable and Foldable Silicon Integrated Circuits. Science, 2008, 320, 507-511.	12.6	1,474
4	A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature Nanotechnology, 2016, 11, 566-572.	31.5	1,394
5	Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nature Nanotechnology, 2014, 9, 397-404.	31.5	1,246
6	Stretchable silicon nanoribbon electronics for skin prosthesis. Nature Communications, 2014, 5, 5747.	12.8	1,145
7	A Physically Transient Form of Silicon Electronics. Science, 2012, 337, 1640-1644.	12.6	1,085
8	Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neuroscience, 2011, 14, 1599-1605.	14.8	981
9	Recent Advances in Flexible and Stretchable Bioâ€Electronic Devices Integrated with Nanomaterials. Advanced Materials, 2016, 28, 4203-4218.	21.0	894
10	Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Science Advances, 2017, 3, e1601314.	10.3	836
11	Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays. Science, 2009, 325, 977-981.	12.6	748
12	Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nature Nanotechnology, 2018, 13, 1048-1056.	31.5	695
13	Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nature Materials, 2011, 10, 316-323.	27.5	670
14	Flexible and Stretchable Electronics for Biointegrated Devices. Annual Review of Biomedical Engineering, 2012, 14, 113-128.	12.3	631
15	Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18675-18680.	7.1	625
16	Stretchable Electronics: Materials Strategies and Devices. Advanced Materials, 2008, 20, 4887-4892.	21.0	565
17	Reverseâ€Micelleâ€Induced Porous Pressureâ€ S ensitive Rubber for Wearable Human–Machine Interfaces. Advanced Materials, 2014, 26, 4825-4830.	21.0	564
18	Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and Arobotics. Nature Materials, 2010, 9, 929-937.	27.5	557

#	Article	IF	CITATIONS
19	Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nature Communications, 2015, 6, 7149.	12.8	536
20	Stretchable, Curvilinear Electronics Based on Inorganic Materials. Advanced Materials, 2010, 22, 2108-2124.	21.0	525
21	Transparent and Stretchable Interactive Human Machine Interface Based on Patterned Graphene Heterostructures. Advanced Functional Materials, 2015, 25, 375-383.	14.9	496
22	Enzymeâ€Based Glucose Sensor: From Invasive to Wearable Device. Advanced Healthcare Materials, 2018, 7, e1701150.	7.6	483
23	Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy. ACS Nano, 2015, 9, 6626-6633.	14.6	462
24	Flexible and Stretchable Electronics Paving the Way for Soft Robotics. Soft Robotics, 2014, 1, 53-62.	8.0	436
25	High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chemical Society Reviews, 2019, 48, 1566-1595.	38.1	400
26	Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nature Communications, 2017, 8, 1664.	12.8	381
27	Ultrathin Silicon Circuits With Strainâ€Isolation Layers and Mesh Layouts for Highâ€Performance Electronics on Fabric, Vinyl, Leather, and Paper. Advanced Materials, 2009, 21, 3703-3707.	21.0	375
28	Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Advanced Functional Materials, 2018, 28, 1801834.	14.9	357
29	Wearable and Implantable Devices for Cardiovascular Healthcare: from Monitoring to Therapy Based on Flexible and Stretchable Electronics. Advanced Functional Materials, 2019, 29, 1808247.	14.9	345
30	A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology. Science Translational Medicine, 2010, 2, 24ra22.	12.4	344
31	Fabricâ€Based Integrated Energy Devices for Wearable Activity Monitors. Advanced Materials, 2014, 26, 6329-6334.	21.0	311
32	Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates. Nano Letters, 2011, 11, 3881-3886.	9.1	307
33	Semiconductor Wires and Ribbons for High―Performance Flexible Electronics. Angewandte Chemie - International Edition, 2008, 47, 5524-5542.	13.8	279
34	Flexible quantum dot light-emitting diodes for next-generation displays. Npj Flexible Electronics, 2018, 2, .	10.7	261
35	Silicon electronics on silk as a path to bioresorbable, implantable devices. Applied Physics Letters, 2009, 95, 133701.	3.3	245
36	Materialâ€Based Approaches for the Fabrication of Stretchable Electronics. Advanced Materials, 2020, 32, e1902743.	21.0	243

#	Article	IF	CITATIONS
37	Device-assisted transdermal drug delivery. Advanced Drug Delivery Reviews, 2018, 127, 35-45.	13.7	237
38	Materials and Fabrication Processes for Transient and Bioresorbable Highâ€Performance Electronics. Advanced Functional Materials, 2013, 23, 4087-4093.	14.9	222
39	Designed Assembly and Integration of Colloidal Nanocrystals for Device Applications. Advanced Materials, 2016, 28, 1176-1207.	21.0	211
40	Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19910-19915.	7.1	209
41	Bioresorbable Electronic Stent Integrated with Therapeutic Nanoparticles for Endovascular Diseases. ACS Nano, 2015, 9, 5937-5946.	14.6	203
42	Wearable Electrocardiogram Monitor Using Carbon Nanotube Electronics and Color-Tunable Organic Light-Emitting Diodes. ACS Nano, 2017, 11, 10032-10041.	14.6	197
43	Ultrathin Quantum Dot Display Integrated with Wearable Electronics. Advanced Materials, 2017, 29, 1700217.	21.0	187
44	Highly conductive and elastic nanomembrane for skin electronics. Science, 2021, 373, 1022-1026.	12.6	186
45	Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bulletin, 2012, 37, 226-235.	3.5	184
46	Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nature Communications, 2020, 11, 5934.	12.8	182
47	Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Science Translational Medicine, 2016, 8, 344ra86.	12.4	181
48	Cephalopodâ€Inspired Miniaturized Suction Cups for Smart Medical Skin. Advanced Healthcare Materials, 2016, 5, 80-87.	7.6	175
49	Bioinspired Artificial Eyes: Optic Components, Digital Cameras, and Visual Prostheses. Advanced Functional Materials, 2018, 28, 1705202.	14.9	174
50	Mechanics of Epidermal Electronics. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	2.2	161
51	An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nature Communications, 2015, 6, 10059.	12.8	159
52	Extremely Vivid, Highly Transparent, and Ultrathin Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, 1703279.	21.0	157
53	Thermally Controlled, Patterned Graphene Transfer Printing for Transparent and Wearable Electronic/Optoelectronic System. Advanced Functional Materials, 2015, 25, 7109-7118.	14.9	155
54	Optimized Structural Designs for Stretchable Silicon Integrated Circuits. Small, 2009, 5, 2841-2847.	10.0	153

#	Article	IF	CITATIONS
55	Ultraâ€Wideband Multiâ€Dyeâ€Sensitized Upconverting Nanoparticles for Information Security Application. Advanced Materials, 2017, 29, 1603169.	21.0	153
56	Colloidal Synthesis of Uniform‣ized Molybdenum Disulfide Nanosheets for Wafer‣cale Flexible Nonvolatile Memory. Advanced Materials, 2016, 28, 9326-9332.	21.0	151
57	Wearable Force Touch Sensor Array Using a Flexible and Transparent Electrode. Advanced Functional Materials, 2017, 27, 1605286.	14.9	151
58	Highâ€Resolution Spinâ€onâ€Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array. Advanced Materials, 2017, 29, 1702902.	21.0	148
59	Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nature Communications, 2019, 10, 5205.	12.8	148
60	Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Science Advances, 2021, 7, .	10.3	144
61	Multifunctional Wearable System that Integrates Sweatâ€Based Sensing and Vitalâ€Sign Monitoring to Estimate Pre…Postâ€Exercise Glucose Levels. Advanced Functional Materials, 2018, 28, 1805754.	14.9	143
62	Wearable and Implantable Soft Bioelectronics Using Two-Dimensional Materials. Accounts of Chemical Research, 2019, 52, 73-81.	15.6	143
63	Thin, Flexible Sensors and Actuators as †Instrumented' Surgical Sutures for Targeted Wound Monitoring and Therapy. Small, 2012, 8, 3263-3268.	10.0	141
64	A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement. Science Advances, 2016, 2, e1501101.	10.3	139
65	Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. NPG Asia Materials, 2012, 4, e15-e15.	7.9	134
66	Stretchable Carbon Nanotube Charge-Trap Floating-Gate Memory and Logic Devices for Wearable Electronics. ACS Nano, 2015, 9, 5585-5593.	14.6	124
67	Stretchable and Transparent Biointerface Using Cellâ€Sheet–Graphene Hybrid for Electrophysiology and Therapy of Skeletal Muscle. Advanced Functional Materials, 2016, 26, 3207-3217.	14.9	123
68	Materials chemistry in flexible electronics. Chemical Society Reviews, 2019, 48, 1431-1433.	38.1	122
69	Fully Stretchable Optoelectronic Sensors Based on Colloidal Quantum Dots for Sensing Photoplethysmographic Signals. ACS Nano, 2017, 11, 5992-6003.	14.6	115
70	Stretchable Electrode Based on Laterally Combed Carbon Nanotubes for Wearable Energy Harvesting and Storage Devices. Advanced Functional Materials, 2017, 27, 1704353.	14.9	110
71	Soft implantable drug delivery device integrated wirelessly with wearable devices to treat fatal seizures. Science Advances, 2021, 7, .	10.3	107
72	The quest for miniaturized soft bioelectronic devices. Nature Biomedical Engineering, 2017, 1, .	22.5	103

#	Article	IF	CITATIONS
73	Toward Full-Color Electroluminescent Quantum Dot Displays. Nano Letters, 2021, 21, 26-33.	9.1	103
74	An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nature Electronics, 2020, 3, 546-553.	26.0	100
75	Heterogeneous stacking of nanodot monolayers by dry pick-and-place transfer and its applications in quantum dot light-emitting diodes. Nature Communications, 2013, 4, 2637.	12.8	99
76	Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Materials, 2019, 7, .	5.1	97
77	Materials and Designs for Wirelessly Powered Implantable Lightâ€Emitting Systems. Small, 2012, 8, 2812-2818.	10.0	93
78	A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings. Journal of Neurophysiology, 2014, 112, 1566-1583.	1.8	90
79	Wearable Sensing Systems with Mechanically Soft Assemblies of Nanoscale Materials. Advanced Materials Technologies, 2017, 2, 1700053.	5.8	89
80	Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications. Advanced Healthcare Materials, 2019, 8, e1801660.	7.6	86
81	Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon. IEEE Electron Device Letters, 2008, 29, 73-76.	3.9	85
82	Facilitated Transdermal Drug Delivery Using Nanocarriers-Embedded Electroconductive Hydrogel Coupled with Reverse Electrodialysis-Driven Iontophoresis. ACS Nano, 2020, 14, 4523-4535.	14.6	83
83	Wearable and Implantable Soft Bioelectronics: Device Designs and Material Strategies. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 359-391.	6.8	81
84	Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon. Applied Physics Letters, 2007, 90, 213501.	3.3	78
85	Printable, Flexible, and Stretchable Forms of Ultrananocrystalline Diamond with Applications in Thermal Management. Advanced Materials, 2008, 20, 2171-2176.	21.0	76
86	Nanomaterials for bioelectronics and integrated medical systems. Korean Journal of Chemical Engineering, 2018, 35, 1-11.	2.7	76
87	An Analytical Model of Reactive Diffusion for Transient Electronics. Advanced Functional Materials, 2013, 23, 3106-3114.	14.9	74
88	Wearable Fall Detector using Integrated Sensors and Energy Devices. Scientific Reports, 2015, 5, 17081.	3.3	74
89	Local versus global buckling of thin films on elastomeric substrates. Applied Physics Letters, 2008, 93,	3.3	73
90	Multifunctional Cell-Culture Platform for Aligned Cell Sheet Monitoring, Transfer Printing, and Therapy. ACS Nano, 2015, 9, 2677-2688.	14.6	72

#	Article	IF	CITATIONS
91	Soft Bioelectronics Based on Nanomaterials. Chemical Reviews, 2022, 122, 5068-5143.	47.7	72
92	Nanomaterialâ€Based Soft Electronics for Healthcare Applications. ChemNanoMat, 2016, 2, 1006-1017.	2.8	65
93	Soft High-Resolution Neural Interfacing Probes: Materials and Design Approaches. Nano Letters, 2019, 19, 2741-2749.	9.1	59
94	Advances in drug delivery technology for the treatment of glioblastoma multiforme. Journal of Controlled Release, 2020, 328, 350-367.	9.9	58
95	Sizing by Weighing: Characterizing Sizes of Ultrasmall-Sized Iron Oxide Nanocrystals Using MALDI-TOF Mass Spectrometry. Journal of the American Chemical Society, 2013, 135, 2407-2410.	13.7	57
96	Materials and Design Strategies of Stretchable Electrodes for Electronic Skin and its Applications. Proceedings of the IEEE, 2019, 107, 2185-2197.	21.3	55
97	Material Design and Fabrication Strategies for Stretchable Metallic Nanocomposites. Small, 2020, 16, e1906270.	10.0	55
98	Deformable devices with integrated functional nanomaterials for wearable electronics. Nano Convergence, 2016, 3, 4.	12.1	54
99	Bioâ€Inspired Artificial Vision and Neuromorphic Image Processing Devices. Advanced Materials Technologies, 2022, 7, 2100144.	5.8	53
100	Materials engineering, processing, and device application of hydrogel nanocomposites. Nanoscale, 2020, 12, 10456-10473.	5.6	52
101	Oxide Nanomembrane Hybrids with Enhanced Mechano―and Thermo ensitivity for Semitransparent Epidermal Electronics. Advanced Healthcare Materials, 2015, 4, 992-997.	7.6	49
102	Multifunctional Injectable Hydrogel for <i>In Vivo</i> Diagnostic and Therapeutic Applications. ACS Nano, 2022, 16, 554-567.	14.6	49
103	Advances in Soft Bioelectronics for Brain Research and Clinical Neuroengineering. Matter, 2020, 3, 1923-1947.	10.0	48
104	Bend, Buckle, and Fold: Mechanical Engineering with Nanomembranes. ACS Nano, 2009, 3, 498-501.	14.6	44
105	Stretchable Lowâ€Impedance Nanocomposite Comprised of Ag–Au Core–Shell Nanowires and Pt Black for Epicardial Recording and Stimulation. Advanced Materials Technologies, 2020, 5, 1900768.	5.8	43
106	Localized Delivery of Theranostic Nanoparticles and Highâ€Energy Photons using Microneedlesâ€onâ€Bioelectronics. Advanced Materials, 2021, 33, e2100425.	21.0	43
107	Three-dimensional foldable quantum dot light-emitting diodes. Nature Electronics, 2021, 4, 671-680.	26.0	43
108	A Biodegradable Secondary Battery and its Biodegradation Mechanism for Ecoâ€Friendly Energyâ€Storage Systems. Advanced Materials, 2021, 33, e2004902.	21.0	42

#	Article	IF	CITATIONS
109	Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nature Nanotechnology, 2022, 17, 849-856.	31.5	42
110	Wireless Power Transfer and Telemetry for Implantable Bioelectronics. Advanced Healthcare Materials, 2021, 10, e2100614.	7.6	41
111	An amphibious artificial vision system with a panoramic visual field. Nature Electronics, 2022, 5, 452-459.	26.0	40
112	Complementary metal oxide silicon integrated circuits incorporating monolithically integrated stretchable wavy interconnects. Applied Physics Letters, 2008, 93, 044102.	3.3	39
113	Unconventional Device and Material Approaches for Monolithic Biointegration of Implantable Sensors and Wearable Electronics. Advanced Materials Technologies, 2020, 5, .	5.8	37
114	Durable and Fatigueâ€Resistant Soft Peripheral Neuroprosthetics for In Vivo Bidirectional Signaling. Advanced Materials, 2021, 33, e2007346.	21.0	37
115	Functionalized Elastomers for Intrinsically Soft and Biointegrated Electronics. Advanced Healthcare Materials, 2021, 10, e2002105.	7.6	36
116	A strain-isolation design for stretchable electronics. Acta Mechanica Sinica/Lixue Xuebao, 2010, 26, 881-888.	3.4	34
117	Sensors in heart-on-a-chip: A review on recent progress. Talanta, 2020, 219, 121269.	5.5	34
118	Materials and devices for flexible and stretchable photodetectors and light-emitting diodes. Nano Research, 2021, 14, 2919-2937.	10.4	34
119	Next-generation flexible neural and cardiac electrode arrays. Biomedical Engineering Letters, 2014, 4, 95-108.	4.1	33
120	Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology, 2019, 30, 132001.	2.6	32
121	Nanomaterials-based flexible and stretchable bioelectronics. MRS Bulletin, 2019, 44, 643-656.	3.5	30
122	Adaptive Selfâ€Organization of Nanomaterials Enables Strainâ€Insensitive Resistance of Stretchable Metallic Nanocomposites. Advanced Materials, 2022, 34, e2200980.	21.0	30
123	Wafer-Scale Production of Transition Metal Dichalcogenides and Alloy Monolayers by Nanocrystal Conversion for Large-Scale Ultrathin Flexible Electronics. Nano Letters, 2021, 21, 9153-9163.	9.1	29
124	Mechanics of stretchable electronics on balloon catheter under extreme deformation. International Journal of Solids and Structures, 2014, 51, 1555-1561.	2.7	28
125	Piezoresistive Behaviour of Additively Manufactured Multi-Walled Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites. Materials, 2019, 12, 2613.	2.9	27
126	Wireless metronomic photodynamic therapy. Nature Biomedical Engineering, 2019, 3, 5-6.	22.5	27

#	Article	IF	CITATIONS
127	Stretchable conductive nanocomposites and their applications in wearable devices. Applied Physics Reviews, 2022, 9, .	11.3	27
128	Soft Implantable Bioelectronics. , 2021, 3, 1528-1540.		24
129	Unconventional Image‣ensing and Lightâ€Emitting Devices for Extended Reality. Advanced Functional Materials, 2021, 31, 2009281.	14.9	23
130	Materials and design strategies for stretchable electroluminescent devices. Nanoscale Horizons, 2022, 7, 801-821.	8.0	22
131	Nanoscale Materials and Deformable Device Designs for Bioinspired and Biointegrated Electronics. Accounts of Materials Research, 2021, 2, 266-281.	11.7	18
132	Perovskite microcells fabricated using swelling-induced crack propagation for colored solar windows. Nature Communications, 2022, 13, 1946.	12.8	18
133	Large scale and integrated platform for digital mass culture of anchorage dependent cells. Nature Communications, 2019, 10, 4824.	12.8	17
134	Deformable inorganic semiconductor. Nature Materials, 2018, 17, 388-389.	27.5	16
135	Flexible and biodegradable electronic implants for diagnosis and treatment of brain diseases. Current Opinion in Biotechnology, 2021, 72, 13-21.	6.6	16
136	Stretchable electronics on another level. Nature Electronics, 2018, 1, 440-441.	26.0	15
137	Facile and Scalable Synthesis of Whiskered Gold Nanosheets for Stretchable, Conductive, and Biocompatible Nanocomposites. ACS Nano, 2022, 16, 10431-10442.	14.6	14
138	Injection and unfolding. Nature Nanotechnology, 2015, 10, 570-571.	31.5	13
139	Wearable Electronics: Transparent and Stretchable Interactive Human Machine Interface Based on Patterned Graphene Heterostructures (Adv. Funct. Mater. 3/2015). Advanced Functional Materials, 2015, 25, 374-374.	14.9	13
140	Wide-range robust wireless power transfer using heterogeneously coupled and flippable neutrals in parity-time symmetry. Science Advances, 2022, 8, .	10.3	13
141	Reduction of Large Particles in Ceria Slurry by Aging and Selective Sedimentation and its Effect on Shallow Trench Isolation Chemical Mechanical Planarization. Japanese Journal of Applied Physics, 2006, 45, 6790-6794.	1.5	12
142	A stretchable electrode array for non-invasive, skin-mounted measurement of electrocardiography (ECG), electromyography (EMG) and electroencephalography (EEG). , 2010, 2010, 6405-8.		12
143	A Facile Fabrication and Transfer Method of Vertically Aligned Carbon Nanotubes on a Mo/Ni Bilayer for Wearable Energy Devices. Advanced Materials Interfaces, 2020, 7, 1902170.	3.7	11
144	Self-assembly for electronics. MRS Bulletin, 2020, 45, 807-814.	3.5	10

#	ARTICLE	IF	CITATIONS
145	The Effect of Cerium Precursor Agglomeration on the Synthesis of Ceria Particles and Its Influence on Shallow Trench Isolation Chemical Mechanical Polishing Performance. Japanese Journal of Applied Physics, 2005, 44, 8422-8426.	1.5	9
146	Artificial Eyes: Bioinspired Artificial Eyes: Optic Components, Digital Cameras, and Visual Prostheses (Adv. Funct. Mater. 24/2018). Advanced Functional Materials, 2018, 28, 1870168.	14.9	8
147	Bio-Inspired Electronic Eyes and Synaptic Photodetectors for Mobile Artificial Vision. , 2022, 1, 76-87.		8
148	Stretchable Electronics: Materialâ€Based Approaches for the Fabrication of Stretchable Electronics (Adv. Mater. 15/2020). Advanced Materials, 2020, 32, 2070118.	21.0	5
149	Skin Electronics: Oxide Nanomembrane Hybrids with Enhanced Mechano- and Thermo-Sensitivity for Semitransparent Epidermal Electronics (Adv. Healthcare Mater. 7/2015). Advanced Healthcare Materials, 2015, 4, 991-991.	7.6	4
150	Stretchable Electronics: Stretchable and Transparent Biointerface Using Cellâ€6heet–Graphene Hybrid for Electrophysiology and Therapy of Skeletal Muscle (Adv. Funct. Mater. 19/2016). Advanced Functional Materials, 2016, 26, 3182-3182.	14.9	4
151	Epidermal Electronics: Cephalopodâ€Inspired Miniaturized Suction Cups for Smart Medical Skin (Adv.) Tj ETQq1	1 0.7843 7.6	14 rgBT /Ove 4
152	Voices of biotech. Nature Biotechnology, 2016, 34, 270-275.	17.5	4
153	Millimeter-scale epileptiform spike patterns and their relationship to seizures. , 2011, 2011, 761-4.		3
154	Flexible Electronics: Materials and Designs for Wirelessly Powered Implantable Lightâ€Emitting Systems (Small 18/2012). Small, 2012, 8, 2770-2770.	10.0	2
155	High-Performance Wearable Bioelectronics Integrated with Functional Nanomaterials. Microsystems and Nanosystems, 2016, , 151-171.	0.1	2
156	Perovskite Thin Films: Highâ€Resolution Spinâ€onâ€Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array (Adv. Mater. 40/2017). Advanced Materials, 2017, 29, .	21.0	2
157	Blood Sugar Monitoring: Multifunctional Wearable System that Integrates Sweatâ€Based Sensing and Vitalâ€Sign Monitoring to Estimate Preâ€∤Postâ€Exercise Glucose Levels (Adv. Funct. Mater. 47/2018). Advanced Functional Materials, 2018, 28, 1870336.	14.9	2
158	Toughness and elasticity from phase separation. Nature Materials, 2022, 21, 266-268.	27.5	2
159	Flexible Displays: Ultrathin Quantum Dot Display Integrated with Wearable Electronics (Adv. Mater.) Tj ETQq1 1	0.784314 21.0	• rgBT /Over o
160	Neuroprosthetics: Durable and Fatigueâ€Resistant Soft Peripheral Neuroprosthetics for In Vivo Bidirectional Signaling (Adv. Mater. 20/2021). Advanced Materials, 2021, 33, 2170157.	21.0	1
161	Stretchable Silicon Electronics and Their Integration with Rubber, Plastic, Paper, Vinyl, Leather and Fabric Substrates. Materials Research Society Symposia Proceedings, 2009, 1196, 1.	0.1	0
162	Flexible biomedical devices for mapping cardiac and neural electrophysiology. , 2011, , .		0

#	Article	IF	CITATIONS
163	Microscale, printed LEDs for unusual lighting and display systems. , 2011, , .		0
164	High performance bio-integrated devices. , 2014, , .		0
165	Stretchable inorganic nanomembrane electronics for healthcare devices. Proceedings of SPIE, 2015, , .	0.8	0
166	Soft bioelectronics using nanomaterials. Proceedings of SPIE, 2016, , .	0.8	0
167	Flexible and stretchable electronics for wearable healthcare devices and minimally invasive surgical tools. , 2016, , .		0
168	Wearable Energy Devices: A Facile Fabrication and Transfer Method of Vertically Aligned Carbon Nanotubes on a Mo/Ni Bilayer for Wearable Energy Devices (Adv. Mater. Interfaces 8/2020). Advanced Materials Interfaces, 2020, 7, 2070046.	3.7	0
169	Ultra-slim, wide field-of-view single lens cameras with designs inspired by an aquatic animal. , 2020, , .		0
170	Soft Bioelectronics Based on Conductive Hydrogel. , 2022, , 377-412.		0