Satinder K Gidda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4656184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tung Tree DGAT1 and DGAT2 Have Nonredundant Functions in Triacylglycerol Biosynthesis and Are Localized to Different Subdomains of the Endoplasmic Reticulum. Plant Cell, 2006, 18, 2294-2313.	6.6	469
2	ldentification of a New Class of Lipid Droplet-Associated Proteins in Plants Â. Plant Physiology, 2013, 162, 1926-1936.	4.8	167
3	Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: Functional divergence of the dilysine ER retrieval motif in plant cells. Plant Physiology and Biochemistry, 2009, 47, 867-879.	5.8	128
4	Disruption of the <i>Arabidopsis</i> CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17833-17838.	7.1	125
5	Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells. Plant Physiology, 2016, 170, 2052-2071.	4.8	125
6	Arabidopsis PEROXIN11c-e, FISSION1b, and DYNAMIN-RELATED PROTEIN3A Cooperate in Cell Cycle–Associated Replication of Peroxisomes. Plant Cell, 2008, 20, 1567-1585.	6.6	98
7	The α/β Hydrolase CGI-58 and Peroxisomal Transport Protein PXA1 Coregulate Lipid Homeostasis and Signaling in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 1726-1739.	6.6	77
8	Arabidopsis lipid dropletâ€associated protein (LDAP) – interacting protein (<scp>LDIP</scp>) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant Journal, 2017, 92, 1182-1201.	5.7	71
9	Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells. Plant Signaling and Behavior, 2013, 8, e27141.	2.4	55
10	<i>Arabidopsis</i> and Maize RidA Proteins Preempt Reactive Enamine/Imine Damage to Branched-Chain Amino Acid Biosynthesis in Plastids Â. Plant Cell, 2014, 26, 3010-3022.	6.6	55
11	Hydrophobicâ€Domainâ€Dependent Protein–Protein Interactions Mediate the Localization of GPAT Enzymes to ER Subdomains. Traffic, 2011, 12, 452-472.	2.7	47
12	Production of a <i>Brassica napus</i> Low-Molecular Mass Acyl-Coenzyme A-Binding Protein in Arabidopsis Alters the Acyl-Coenzyme A Pool and Acyl Composition of Oil in Seeds Â. Plant Physiology, 2014, 165, 550-560.	4.8	42
13	Arabidopsis <i>TH2</i> Encodes the Orphan Enzyme Thiamin Monophosphate Phosphatase. Plant Cell, 2016, 28, 2683-2696.	6.6	42
14	SEIPIN Isoforms Interact with the Membrane-Tethering Protein VAP27-1 for Lipid Droplet Formation. Plant Cell, 2020, 32, 2932-2950.	6.6	39
15	Mouse fat storageâ€inducing transmembrane protein 2 (<scp>FIT</scp> 2) promotes lipid droplet accumulation in plants. Plant Biotechnology Journal, 2017, 15, 824-836.	8.3	37
16	Multiple Domains in <scp>PEX16</scp> Mediate Its Trafficking and Recruitment of Peroxisomal Proteins to the <scp>ER</scp> . Traffic, 2015, 16, 832-852.	2.7	35
17	Glyoxylate Reductase Isoform 1 is Localized in the Cytosol and Not Peroxisomes in Plant Cells. Journal of Integrative Plant Biology, 2012, 54, 152-168.	8.5	33
18	LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in Arabidopsis. Plant Cell, 2021, 33, 3076-3103.	6.6	31

SATINDER K GIDDA

#	Article	IF	CITATIONS
19	Sunflower HaGPAT9-1 is the predominant GPAT during seed development. Plant Science, 2016, 252, 42-52.	3.6	30
20	New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane. Frontiers in Plant Science, 2014, 5, 426.	3.6	29
21	Engineering the production of conjugated fatty acids in <i>Arabidopsis thaliana</i> leaves. Plant Biotechnology Journal, 2017, 15, 1010-1023.	8.3	29
22	An Apoplastic β-Glucosidase is Essential for the Degradation of Flavonol 3-O-β-Glucoside-7-O-α-Rhamnosides in Arabidopsis. Plant and Cell Physiology, 2017, 58, 1030-1047.	3.1	18
23	New Insights Into Sunflower (Helianthus annuus L.) FatA and FatB Thioesterases, Their Regulation, Structure and Distribution. Frontiers in Plant Science, 2018, 9, 1496.	3.6	18
24	An RK/ST C-Terminal Motif is Required for Targeting of OEP7.2 and a Subset of Other Arabidopsis Tail-Anchored Proteins to the Plastid Outer Envelope Membrane. Plant and Cell Physiology, 2019, 60, 516-537.	3.1	16
25	Arabidopsis thaliana EARLY RESPONSIVE TO DEHYDRATION 7 Localizes to Lipid Droplets via Its Senescence Domain. Frontiers in Plant Science, 2021, 12, 658961.	3.6	16
26	Mouse Fat-Specific Protein 27 (FSP27) expressed in plant cells localizes to lipid droplets and promotes lipid droplet accumulation and fusion. Biochimie, 2020, 169, 41-53.	2.6	14
27	CGI-58, a key regulator of lipid homeostasis and signaling in plants, also regulates polyamine metabolism. Plant Signaling and Behavior, 2014, 9, e27723.	2.4	10
28	Subcellular Localization of Acyl-CoA: Lysophosphatidylethanolamine Acyltransferases (LPEATs) and the Effects of Knocking-Out and Overexpression of Their Genes on Autophagy Markers Level and Life Span of A. thaliana. International Journal of Molecular Sciences, 2021, 22, 3006.	4.1	6
29	Distinct domains within the NITROGEN LIMITATION ADAPTATION protein mediate its subcellular localization and function in the nitrate-dependent phosphate homeostasis pathway. Botany, 2018, 96, 79-96.	1.0	5
30	Genome-wide analysis of Homo sapiens, Arabidopsis thaliana, and Saccharomyces cerevisiae reveals novel attributes of tail-anchored membrane proteins. BMC Genomics, 2019, 20, 835.	2.8	4
31	TEMPERATUREâ€SENSITIVE, POSTâ€TRANSLATIONAL REGULATION OF PLANT OMEGAâ€3 FATTY ACID DESATUR MEDIATED BY THE ERâ€ASSOCIATED DEGRADATION PATHWAY. FASEB Journal, 2010, 24, 844.1.	ASES IS	0
32	CGIâ€58 regulates triacylglycerol metabolism and lipid signaling pathways in plant cells. FASEB Journal, 2012, 26, 594.3.	0.5	0