Ariela Benigni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4655966/publications.pdf

Version: 2024-02-01

295 papers 20,068 citations

7551 77 h-index 130 g-index

298 all docs

298 docs citations

times ranked

298

19392 citing authors

#	Article	IF	CITATIONS
1	Mesenchymal Stem Cells Are Renotropic, Helping to Repair the Kidney and Improve Function in Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2004, 15, 1794-1804.	3.0	690
2	Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Molecular Medicine, 2010, 2, 247-257.	3.3	595
3	Understanding the nature of renal disease progression. Kidney International, 1997, 51, 2-15.	2.6	572
4	Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. Journal of Clinical Investigation, 2006, 116 , $288-296$.	3.9	512
5	Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nature Reviews Nephrology, 2021, 17, 46-64.	4.1	444
6	Disruption of the Ang II type 1 receptor promotes longevity in mice. Journal of Clinical Investigation, 2009, 119, 524-530.	3.9	434
7	Human Bone Marrow Mesenchymal Stem Cells Accelerate Recovery of Acute Renal Injury and Prolong Survival in Mice. Stem Cells, 2008, 26, 2075-2082.	1.4	351
8	Sirtuin 3–dependent mitochondrial dynamic improvements protect against acute kidney injury. Journal of Clinical Investigation, 2015, 125, 715-726.	3.9	335
9	Effect of Low-Dose Aspirin on Fetal and Maternal Generation of Thromboxane by Platelets in Women at Risk for Ppregnancy-Induced Hypertension. New England Journal of Medicine, 1989, 321, 357-362.	13.9	326
10	MicroRNAs in kidney physiology and disease. Nature Reviews Nephrology, 2015, 11, 23-33.	4.1	307
11	Transfer of Growth Factor Receptor mRNA Via Exosomes Unravels the Regenerative Effect of Mesenchymal Stem Cells. Stem Cells and Development, 2013, 22, 772-780.	1.1	300
12	Insulin-Like Growth Factor-1 Sustains Stem Cell–Mediated Renal Repair. Journal of the American Society of Nephrology: JASN, 2007, 18, 2921-2928.	3.0	294
13	Anti-Phospholipase A2 Receptor Antibody Titer Predicts Post-Rituximab Outcome of Membranous Nephropathy. Journal of the American Society of Nephrology: JASN, 2015, 26, 2545-2558.	3.0	280
14	Recommendations for Biomarker Identification and Qualification in Clinical Proteomics. Science Translational Medicine, 2010, 2, 46ps42.	5.8	273
15	The case of complement activation in COVID-19 multiorgan impact. Kidney International, 2020, 98, 314-322.	2.6	268
16	Should COVID-19 Concern Nephrologists? Why and to What Extent? The Emerging Impasse of Angiotensin Blockade. Nephron, 2020, 144, 213-221.	0.9	245
17	Endothelin antagonists. Lancet, The, 1999, 353, 133-138.	6.3	239
18	Sirtuins in Renal Health and Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 1799-1809.	3.0	233

#	Article	IF	CITATIONS
19	Proximal tubular cell synthesis and secretion of endothelin-1 on challenge with albumin and other proteins. American Journal of Kidney Diseases, 1995, 26, 934-941.	2.1	232
20	<i>MYO1E</i> Mutations and Childhood Familial Focal Segmental Glomerulosclerosis. New England Journal of Medicine, 2011, 365, 295-306.	13.9	221
21	A specific endothelin subtype A receptor antagonist protects against injury in renal disease progression. Kidney International, 1993, 44, 440-444.	2.6	215
22	Enhanced nitric oxide synthesis in uremia: Implications for platelet dysfunction and dialysis hypotension. Kidney International, 1993, 44, 445-450.	2.6	204
23	Calcium channel blockers protect transplant patients from cyclosporine-induced daily renal hypoperfusion. Kidney International, 1993, 43, 706-711.	2.6	189
24	Nonviral Gene Delivery to the Rat Kidney with Polyethylenimine. Human Gene Therapy, 1997, 8, 1243-1251.	1.4	188
25	Add-On Anti–TGF-β Antibody to ACE Inhibitor Arrests Progressive Diabetic Nephropathy in the Rat. Journal of the American Society of Nephrology: JASN, 2003, 14, 1816-1824.	3.0	177
26	Renal Progenitor Cells Contribute to Hyperplastic Lesions of Podocytopathies and Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2009, 20, 2593-2603.	3.0	173
27	Recellularization of Well-Preserved Acellular Kidney Scaffold Using Embryonic Stem Cells. Tissue Engineering - Part A, 2014, 20, 1486-1498.	1.6	169
28	Life-Sparing Effect of Human Cord Blood-Mesenchymal Stem Cells in Experimental Acute Kidney Injury. Stem Cells, 2010, 28, 513-522.	1.4	161
29	In Vivo Maturation of Functional Renal Organoids Formed from Embryonic Cell Suspensions. Journal of the American Society of Nephrology: JASN, 2012, 23, 1857-1868.	3.0	156
30	Mapping the Theories of Preeclampsia and the Role of Angiogenic Factors. Obstetrics and Gynecology, 2007, 109, 168-180.	1.2	155
31	Reduced Platelet Thromboxane Formation in Uremia. EVIDENCE FOR A FUNCTIONAL CYCLOOXYGENASE DEFECT. Journal of Clinical Investigation, 1983, 71, 762-768.	3.9	153
32	Renal endothelin gene expression is increased in remnant kidney and correlates with disease progression. Kidney International, 1993, 43, 354-358.	2.6	153
33	DAILY RENAL HYPOPERFUSION INDUCED BY CYCLOSPORINE IN PATIENTS WITH RENAL TRANSPLANTATION. Transplantation, 1992, 54, 56-60.	0.5	151
34	In Response to Protein Load Podocytes Reorganize Cytoskeleton and Modulate Endothelin-1 Gene. American Journal of Pathology, 2005, 166, 1309-1320.	1.9	151
35	Podocyte–actin dynamics in health and disease. Nature Reviews Nephrology, 2016, 12, 692-710.	4.1	150
36	Protein traffic activates NF-kB gene signaling and promotes MCP-1–dependent interstitial inflammation. American Journal of Kidney Diseases, 2000, 36, 1226-1241.	2.1	145

#	Article	IF	Citations
37	l-Arginine Depletion in Preeclampsia Orients Nitric Oxide Synthase Toward Oxidant Species. Hypertension, 2004, 43, 614-622.	1.3	139
38	Renal and systemic nitric oxide synthesis in rats with renal mass reduction. Kidney International, 1997, 52, 171-181.	2.6	138
39	Pathophysiologic Implications of Reduced Podocyte Number in a Rat Model of Progressive Glomerular Injury. American Journal of Pathology, 2006, 168, 42-54.	1.9	134
40	Cellular responses to protein overload: key event in renal disease progression. Current Opinion in Nephrology and Hypertension, 2004, 13, 31-37.	1.0	132
41	Outrageous prices of orphan drugs: a call for collaboration. Lancet, The, 2018, 392, 791-794.	6.3	132
42	New therapeutics that antagonize endothelin: promises and frustrations. Nature Reviews Drug Discovery, 2002, 1, 986-1001.	21.5	130
43	Inhibition of the chemokine receptor CXCR2 prevents kidney graft function deterioration due to ischemia/reperfusion. Kidney International, 2005, 67, 1753-1761.	2.6	126
44	Bone Marrow–Derived Mesenchymal Stem Cells Improve Islet Graft Function in Diabetic Rats. Transplantation Proceedings, 2009, 41, 1797-1800.	0.3	126
45	Kidney regeneration. Lancet, The, 2010, 375, 1310-1317.	6.3	126
46	Combining an Antiproteinuric Approach with Mycophenolate Mofetil Fully Suppresses Progressive Nephropathy of Experimental Animals. Journal of the American Society of Nephrology: JASN, 1999, 10, 1542-1549.	3.0	126
47	Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nature Communications, 2017, 8, 983.	5 . 8	124
48	Fluid Shear Stress Modulates von Willebrand Factor Release From Human Vascular Endothelium. Blood, 1997, 90, 1558-1564.	0.6	123
49	Blocking Angiotensin II Synthesis/Activity Preserves Glomerular Nephrin in Rats with Severe Nephrosis. Journal of the American Society of Nephrology: JASN, 2001, 12, 941-948.	3.0	122
50	Protein Overload Induces Fractalkine Upregulation in Proximal Tubular Cells through Nuclear Factor κB– and p38 Mitogen-Activated Protein Kinase–Dependent Pathways. Journal of the American Society of Nephrology: JASN, 2003, 14, 2436-2446.	3.0	118
51	The Nrf2 pathway in the progression of renal disease. Nephrology Dialysis Transplantation, 2014, 29, i19-i24.	0.4	117
52	Unlike each drug alone, lisinopril if combined with avosentan promotes regression of renal lesions in experimental diabetes. American Journal of Physiology - Renal Physiology, 2009, 297, F1448-F1456.	1.3	114
53	SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight, 2018, 3, .	2.3	114
54	Selective impairment of gene expression and assembly of nephrin in human diabetic nephropathy. Kidney International, 2004, 65, 2193-2200.	2.6	112

#	Article	IF	CITATIONS
55	Human Amniotic Fluid Stem Cell Preconditioning Improves Their Regenerative Potential. Stem Cells and Development, 2012, 21, 1911-1923.	1.1	112
56	Endothelins in the control of cardiovascular and renal function. Lancet, The, 1993, 342, 589-593.	6.3	110
57	A Novel Strategy to Enhance Mesenchymal Stem Cell Migration Capacity and Promote Tissue Repair in an Injury Specific Fashion. Cell Transplantation, 2013, 22, 423-436.	1.2	109
58	Unselective inhibition of endothelin receptors reduces renal dysfunction in experimental diabetes. Diabetes, 1998, 47, 450-456.	0.3	107
59	ACE inhibition reduces glomerulosclerosis and regenerates glomerular tissue in a model of progressive renal disease. Kidney International, 2006, 69, 1124-1130.	2.6	106
60	MicroRNAs as Master Regulators of Glomerular Function in Health and Disease. Journal of the American Society of Nephrology: JASN, 2017, 28, 1686-1696.	3.0	102
61	Inhibiting Angiotensin-Converting Enzyme Promotes Renal Repair by Limiting Progenitor Cell Proliferation and Restoring the Glomerular Architecture. American Journal of Pathology, 2011, 179, 628-638.	1.9	100
62	Blocking both type A and B endothelin receptors in the kidney attenuates renal injury and prolongs survival in rats with remnant kidney. American Journal of Kidney Diseases, 1996, 27, 416-423.	2.1	99
63	Nature and mediators of renal lesions in kidney transplant patients given cyclosporine for more than one year. Kidney International, 1999, 55, 674-685.	2.6	93
64	Reversible Activation Defect of the Platelet Glycoprotein IIb-IIIa Complex in Patients With Uremia. American Journal of Kidney Diseases, 1993, 22, 668-676.	2.1	92
65	Shigatoxin-Induced Endothelin-1 Expression in Cultured Podocytes Autocrinally Mediates Actin Remodeling. American Journal of Pathology, 2006, 169, 1965-1975.	1.9	92
66	Mesenchymal stem cells and kidney repair. Nephrology Dialysis Transplantation, 2013, 28, 788-793.	0.4	91
67	Imaging of the Porous Ultrastructure of the Glomerular Epithelial Filtration Slit. Journal of the American Society of Nephrology: JASN, 2010, 21, 2081-2089.	3.0	90
68	Analogs of bardoxolone methyl worsen diabetic nephropathy in rats with additional adverse effects. American Journal of Physiology - Renal Physiology, 2013, 304, F808-F819.	1.3	90
69	Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival. Scientific Reports, 2017, 7, 11518.	1.6	89
70	Proteasomal Processing of Albumin by Renal Dendritic Cells Generates Antigenic Peptides. Journal of the American Society of Nephrology: JASN, 2009, 20, 123-130.	3.0	88
71	Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy. American Journal of Physiology - Renal Physiology, 2012, 303, F1370-F1381.	1.3	88
72	Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Scientific Reports, 2015, 5, 8826.	1.6	88

#	Article	IF	Citations
73	Abatacept in B7-1–Positive Proteinuric Kidney Disease. New England Journal of Medicine, 2014, 370, 1261-1266.	13.9	87
74	THE ACUTE EFFECT OF FK506 AND CYCLOSPORINE ON ENDOTHELIAL CELL FUNCTION AND RENAL VASCULAR RESISTANCE. Transplantation, 1992, 54, 775-779.	0.5	84
75	MicroRNA-324-3p Promotes Renal Fibrosis and Is a Target of ACE Inhibition. Journal of the American Society of Nephrology: JASN, 2012, 23, 1496-1505.	3.0	84
76	Aging and the Renin-Angiotensin System. Hypertension, 2012, 60, 878-883.	1.3	80
77	Renoprotective effect of contemporary blocking of angiotensin II and endothelin-1 in rats with membranous nephropathy1. Kidney International, 1998, 54, 353-359.	2.6	77
78	Present and future drug treatments for chronic kidney diseases: evolving targets in renoprotection. Nature Reviews Drug Discovery, 2008, 7, 936-953.	21.5	77
79	Key fibrogenic mediators: old players. Renin–angiotensin system. Kidney International Supplements, 2014, 4, 58-64.	4.6	77
80	Effect of angiotensin II antagonism on the regression of kidney disease in the rat. Kidney International, 2002, 62, 885-894.	2.6	76
81	Transcriptional Regulation of Nephrin Gene by Peroxisome Proliferator–Activated Receptor-γ Agonist: Molecular Mechanism of the Antiproteinuric Effect of Pioglitazone. Journal of the American Society of Nephrology: JASN, 2006, 17, 1624-1632.	3.0	76
82	Renal Expression of FGF23 in Progressive Renal Disease of Diabetes and the Effect of Ace Inhibitor. PLoS ONE, 2013, 8, e70775.	1.1	75
83	Recombinant Human Erythropoietin to Correct Uremic Bleeding. American Journal of Kidney Diseases, 1991, 18, 44-49.	2.1	72
84	Early histological changes in the kidney of people with morbid obesity. Nephrology Dialysis Transplantation, 2009, 24, 3732-3738.	0.4	72
85	An ExÂVivo Test of Complement Activation on Endothelium for Individualized Eculizumab Therapy in Hemolytic Uremic Syndrome. American Journal of Kidney Diseases, 2019, 74, 56-72.	2.1	71
86	<i>Sirt3</i> Deficiency Shortens Life Span and Impairs Cardiac Mitochondrial Function Rescued by <i>Opa1</i> Gene Transfer. Antioxidants and Redox Signaling, 2019, 31, 1255-1271.	2.5	70
87	Increased urinary excretion of thromboxane B2 and 2,3-dinor-TxB2 in cyclosporin A nephrotoxicity. Kidney International, 1988, 34, 164-174.	2.6	69
88	MODERATE DOSES OF ASPIRIN AND RISK OF BLEEDING IN RENAL FAILURE. Lancet, The, 1986, 327, 414-416.	6.3	67
89	Increased renal endothelin production in rats with reduced renal mass. American Journal of Physiology - Renal Physiology, 1991, 260, F331-F339.	1.3	66
90	Generation of functional podocytes from human induced pluripotent stem cells. Stem Cell Research, 2016, 17, 130-139.	0.3	65

#	Article	IF	CITATIONS
91	Role of anti-TGF- \hat{l}^2 antibodies in the treatment of renal injury. Cytokine and Growth Factor Reviews, 2006, 17, 89-96.	3.2	64
92	Membranous Nephropathy Associated With IgG4-Related Disease. American Journal of Kidney Diseases, 2011, 58, 272-275.	2.1	64
93	CTLA4lg Gene Transfer Prolongs Survival and Induces Donor-Specific Tolerance in a Rat Renal Allograft. Journal of the American Society of Nephrology: JASN, 2000, 11, 747-752.	3.0	64
94	β-Arrestin-1 Drives Endothelin-1–Mediated Podocyte Activation and Sustains Renal Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 523-533.	3.0	63
95	Systemic and fetal-maternal nitric oxide synthesis in normal pregnancy and pre-eclampsia. BJOG: an International Journal of Obstetrics and Gynaecology, 1996, 103, 879-886.	1.1	61
96	Involvement of renal tubular toll-like receptor 9 in the development of tubulointerstitial injury in systemic lupus. Arthritis and Rheumatism, 2007, 56, 1569-1578.	6.7	61
97	Angiotensin receptors as determinants of life span. Pflugers Archiv European Journal of Physiology, 2010, 459, 325-332.	1.3	59
98	Evaluation of the Zucker Diabetic Fatty (ZDF) Rat as a Model for Human Disease Based on Urinary Peptidomic Profiles. PLoS ONE, 2012, 7, e51334.	1.1	59
99	Nature and Mediators of Parietal Epithelial Cell Activation in Glomerulonephritides of Human and Rat. American Journal of Pathology, 2013, 183, 1769-1778.	1.9	59
100	The Regenerative Potential of Stem Cells in Acute Renal Failure. Cell Transplantation, 2006, 15, 111-117.	1.2	58
101	Biomarkers of Fabry Disease Nephropathy. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 360-364.	2.2	58
102	Mitochondrial Sirtuin 3 and Renal Diseases. Nephron, 2016, 134, 14-19.	0.9	58
103	Blunted excretory response to atrial natriuretic peptide in experimental nephrosis. Kidney International, 1989, 36, 57-64.	2.6	57
104	Acute intradialytic well-being: Results of a clinical trial comparing polysulfone with cuprophan. Kidney International, 1991, 40, 714-719.	2.6	57
105	Evidence against a pathogenetic role for endothelin in pre-eclampsia. BJOG: an International Journal of Obstetrics and Gynaecology, 1992, 99, 798-802.	1.1	57
106	How renal cytokines and growth factors contribute to renal disease progression. American Journal of Kidney Diseases, 2001, 37, S21-S24.	2.1	57
107	Protein Overload Activates Proximal Tubular Cells to Release Vasoactive and Inflammatory Mediators. Nephron Experimental Nephrology, 1999, 7, 420-428.	2.4	56
108	Distinct cardiac and renal effects of ET _A receptor antagonist and ACE inhibitor in experimental type 2 diabetes. American Journal of Physiology - Renal Physiology, 2011, 301, F1114-F1123.	1,3	56

#	Article	IF	CITATIONS
109	Antibody-mediated extraction/negative-ion chemical ionization mass spectrometric measurement of thromboxane B2 and 2,3-dinor-thromboxane B2 in human and rat urine. Analytical Biochemistry, 1987, 163, 255-262.	1.1	55
110	Indomethacin reduces proteinuria in passive Heymann nephritis in rats. Kidney International, 1987, 31, 1335-1343.	2.6	55
111	Pharmacologic control of angiotensin II ameliorates renal disease while reducing renal TGF-beta in experimental mesangioproliferative glomerulonephritis. American Journal of Kidney Diseases, 1998, 31, 453-463.	2.1	55
112	MicroRNA-184 is a downstream effector of albuminuria driving renal fibrosis in rats with diabetic nephropathy. Diabetologia, 2017, 60, 1114-1125.	2.9	54
113	Nephrotoxicity of increased glomerular protein traffic. Nephrology Dialysis Transplantation, 1999, 14, 304-312.	0.4	53
114	Vasopeptidase inhibitor restores the balance of vasoactive hormones in progressive nephropathy. Kidney International, 2004, 66, 1959-1965.	2.6	52
115	Experimental Evaluation of Kidney Regeneration by Organ Scaffold Recellularization. Scientific Reports, 2017, 7, 43502.	1.6	52
116	Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells. Journal of the American Society of Nephrology: JASN, 2016, 27, 1400-1411.	3.0	51
117	Manipulating Sirtuin 3 pathway ameliorates renal damage in experimental diabetes. Scientific Reports, 2020, 10, 8418.	1.6	51
118	Functional significance of exaggerated renal thromboxane A2 synthesis induced by cyclosporin A. American Journal of Physiology - Renal Physiology, 1986, 251, F581-F587.	1.3	50
119	Human placenta expresses endothelin gene and corresponding protein is excreted in urine in increasing amounts during normal pregnancy. American Journal of Obstetrics and Gynecology, 1991, 164, 844-848.	0.7	50
120	Kidney failure: aims for the next 10 years and barriers to success. Lancet, The, 2013, 382, 353-362.	6.3	50
121	Atrial Natriuretic Peptide and Prostacyclin Synergistically Mediate Hyperfiltration and Hyperperfusion of Diabetic Rats. Diabetes, 1992, 41, 533-538.	0.3	49
122	Mycophenolate mofetil combined with a cyclooxygenase-2 inhibitor ameliorates murine lupus nephritis. Kidney International, 2001, 60, 653-663.	2.6	49
123	Adding a statin to a combination of ACE inhibitor and ARB normalizes proteinuria in experimental diabetes, which translates into full renoprotection. American Journal of Physiology - Renal Physiology, 2010, 299, F1203-F1211.	1.3	49
124	Summary of the International Conference on Onco-Nephrology: an emerging field in medicine. Kidney International, 2019, 96, 555-567.	2.6	47
125	Cyclin-dependent kinase inhibition limits glomerulonephritis and extends lifespan of mice with systemic lupus. Arthritis and Rheumatism, 2007, 56, 1629-1637.	6.7	46
126	The Toll-IL-1R Member Tir8/SIGIRR Negatively Regulates Adaptive Immunity against Kidney Grafts. Journal of Immunology, 2009, 183, 4249-4260.	0.4	46

#	Article	IF	CITATIONS
127	Mitochondrial Dynamics Is Linked to Longevity and Protects from End-Organ Injury: The Emerging Role of Sirtuin 3. Antioxidants and Redox Signaling, 2016, 25, 185-199.	2.5	46
128	C3a receptor blockade protects podocytes from injury in diabetic nephropathy. JCI Insight, 2020, 5, .	2.3	46
129	Angiotensin-Converting Enzyme nhibition Prevents Glomerular-Tubule Disconnection and Atrophy in Passive Heymann Nephritis, an Effect Not Observed with a Calcium Antagonist. American Journal of Pathology, 2001, 159, 1743-1750.	1.9	45
130	Any value of podocyte B7-1 as a biomarker in human MCD and FSGS?. American Journal of Physiology - Renal Physiology, 2016, 310, F335-F341.	1.3	45
131	SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and Complement System Leading to Platelet Aggregation. Frontiers in Immunology, 2022, 13, 827146.	2.2	45
132	INCREASED URINARY EXCRETION OF ENDOTHELIN-1 AND ITS PRECURSOR, BIG-ENDOTHELIN-1, IN RATS CHRONICALLY TREATED WITH CYCLOSPORINE. Transplantation, 1991, 52, 175-177.	0.5	44
133	Angiotensin II Blockade Limits Tubular Protein Overreabsorption and the Consequent Upregulation of Endothelin 1 Gene in Experimental Membranous Nephropathy. Nephron Experimental Nephrology, 1998, 6, 121-131.	2.4	44
134	Changes in glomerular perm-selectivity induced by angiotensin II imply podocyte dysfunction and slit diaphragm protein rearrangement. Seminars in Nephrology, 2004, 24, 131-140.	0.6	44
135	PARATHYROID HORMONE INHIBITS HUMAN PLATELET FUNCTION. Lancet, The, 1981, 318, 1321-1323.	6.3	43
136	Beneficial Effect of $TGF\hat{l}^2$ Antagonism in Treating Diabetic Nephropathy Depends on When Treatment Is Started. Nephron Experimental Nephrology, 2006, 104, e158-e168.	2.4	43
137	Engineering the vasculature of decellularized rat kidney scaffolds using human induced pluripotent stem cell-derived endothelial cells. Scientific Reports, 2019, 9, 8001.	1.6	43
138	Renoprotection by nitric oxide donor and lisinopril in the remnant kidney model. American Journal of Kidney Diseases, 1999, 33, 746-753.	2.1	42
139	Endothelin antagonists in renal disease. Kidney International, 2000, 57, 1778-1794.	2.6	42
140	Polymorphisms of EDNRB, ATG, and ACE genes in salt-sensitive hypertensionThis article is one of a selection of papers published in the special issue (part 2 of 2) on Forefronts in Endothelin Canadian Journal of Physiology and Pharmacology, 2008, 86, 505-510.	0.7	42
141	Targeted Downregulation of Extracellular Nephrin in Human IgA Nephropathy. American Journal of Nephrology, 2003, 23, 277-286.	1.4	41
142	Aging and the kidney. Current Opinion in Nephrology and Hypertension, 2011, 20, 312-317.	1.0	40
143	Variations of the angiotensin II type 1 receptor gene are associated with extreme human longevity. Age, 2013, 35, 993-1005.	3.0	40
144	Angiotensin II Contributes to Diabetic Renal Dysfunction in Rodents and Humans via Notch1/Snail Pathway. American Journal of Pathology, 2013, 183, 119-130.	1.9	39

#	Article	IF	Citations
145	COVID-19 and lombardy: TESTing the impact of the first wave of the pandemic. EBioMedicine, 2020, 61, 103069.	2.7	38
146	Effect on blood pressure of combined inhibition of endothelin-converting enzyme and neutral endopeptidase with daglutril in patients with type 2 diabetes who have albuminuria: a randomised, crossover, double-blind, placebo-controlled trial. Lancet Diabetes and Endocrinology,the, 2013, 1, 19-27.	5.5	37
147	Unraveling the Molecular Mechanisms Underlying Complement Dysregulation by Nephritic Factors in C3G and IC-MPGN. Frontiers in Immunology, 2018, 9, 2329.	2.2	37
148	Thromboxane A2 receptor blocking abrogates donor-specific unresponsiveness to renal allografts induced by thymic recognition of major histocompatibility allopeptides Journal of Experimental Medicine, 1994, 180, 1967-1972.	4.2	36
149	Erythropoietin, but not the correction of anemia alone, protects from chronic kidney allograft injury. Kidney International, 2012, 81, 903-918.	2.6	36
150	Therapy with a Selective Cannabinoid Receptor Type 2 Agonist Limits Albuminuria and Renal Injury in Mice with Type 2 Diabetic Nephropathy. Nephron, 2016, 132, 59-69.	0.9	36
151	Regression of Renal Disease by Angiotensin II Antagonism Is Caused by Regeneration of Kidney Vasculature. Journal of the American Society of Nephrology: JASN, 2016, 27, 699-705.	3.0	36
152	The metabolism of arachidonic acid by platelets in nephrotic syndrome. Kidney International, 1984, 25, 671-676.	2.6	34
153	Dendritic Cells Genetically Engineered with Adenoviral Vector Encoding dnlKK2 Induce the Formation of Potent CD4+ T-Regulatory Cells. Transplantation, 2005, 79, 1056-1061.	0.5	32
154	Complement Alternative Pathway Deficiency in Recipients Protects Kidney Allograft From Ischemia/Reperfusion Injury and Alloreactive T Cell Response. American Journal of Transplantation, 2017, 17, 2312-2325.	2.6	32
155	Combined Treatment with Mycophenolate Mofetil and an Angiotensin II Receptor Antagonist Fully Protects from Chronic Rejection in a Rat Model of Renal Allograft. Journal of the American Society of Nephrology: JASN, 2001, 12, 1937-1946.	3.0	32
156	Glomerular Hyperfiltration and Urinary Prostaglandins in Type 1 Diabetes Mellitus. Diabetic Medicine, 1989, 6, 219-223.	1.2	31
157	Targeted Deletion of Angiotensin II Type 1A Receptor Does not Protect Mice from Progressive Nephropathy of Overload Proteinuria. Journal of the American Society of Nephrology: JASN, 2004, 15, 2666-2674.	3.0	31
158	Adeno-Associated Virus–Mediated CTLA4Ig Gene Transfer Protects MHC-Mismatched Renal Allografts from Chronic Rejection. Journal of the American Society of Nephrology: JASN, 2006, 17, 1665-1672.	3.0	31
159	Therapeutic potential of TGF- \hat{l}^2 inhibition in chronic renal failure. Expert Opinion on Biological Therapy, 2007, 7, 293-304.	1.4	31
160	Rare Functional Variants in Complement Genes and Anti-FH Autoantibodies-Associated aHUS. Frontiers in Immunology, 2019, 10, 853.	2.2	31
161	Addition of cyclic angiotensin-(1-7) to angiotensin-converting enzyme inhibitor therapy has a positiveÂadd-on effect in experimental diabeticÂnephropathy. Kidney International, 2019, 96, 906-917.	2.6	31
162	C5a and C5aR1 are key drivers of microvascular platelet aggregation in clinical entities spanning from aHUS to COVID-19. Blood Advances, 2022, 6, 866-881.	2.5	31

#	Article	IF	CITATIONS
163	ACE inhibition limits chronic injury of kidney transplant even with treatment started when lesions are established. Kidney International, 2003, 64, 2253-2261.	2.6	30
164	B7–1 Is Not Induced in Podocytes of Human and Experimental Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2016, 27, 999-1005.	3.0	30
165	Quantitative profiling of 6-ketoprostaglandin F1α, 2,3-dinor-6-ketoprostaglandin F1α, thromboxane B2 and 2,3-dinor-thromboxane B2 in human and rat urine by immunoaffinity extraction with gas chromatography—mass spectrometry. Biomedical Applications, 1989, 495, 1-11.	1.7	29
166	ACE inhibition prevents renal failure and death in uninephrectomized MWF/Ztm rats. Kidney International, 1995, 47, 1319-1326.	2.6	29
167	Early and late scanning electron microscopy findingsÂin diabetic kidney disease. Scientific Reports, 2018, 8, 4909.	1.6	29
168	Role of enhanced glomerular synthesis of thromboxane A2 in progressive kidney disease. Kidney International, 1990, 38, 447-458.	2.6	28
169	Immunophenotypic Analysis of Cellular Infiltrate of Renal Allograft Biopsies in Patients with Acute Rejection after Induction with Alemtuzumab (Campath-1H). Clinical Journal of the American Society of Nephrology: CJASN, 2006, 1, 539-545.	2.2	27
170	Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts. Stem Cell Reports, 2015, 4, 685-698.	2.3	27
171	Engineered Kidney Tubules for Modeling Patient-Specific Diseases and Drug Discovery. EBioMedicine, 2018, 33, 253-268.	2.7	27
172	Endothelin Antagonists and Renal Protection. Journal of Cardiovascular Pharmacology, 2000, 35, S75-S78.	0.8	27
173	Endothelin and eicosanoid synthesis in cultured mesangial cells. Kidney International, 1990, 37, 927-933.	2.6	26
174	Urinary excretion of platelet-activating factor in haemolytic uraemic syndrome. Lancet, The, 1992, 339, 835-836.	6.3	26
175	Renal Prostacyclin Biosynthesis Is Reduced in Children With Hemolytic-Uremic Syndrome in the Context of Systemic Platelet Activation. American Journal of Kidney Diseases, 1992, 20, 144-149.	2.1	26
176	Therapeutic potential of stromal cells of non-renal or renal origin in experimental chronic kidney disease. Stem Cell Research and Therapy, 2018, 9, 220.	2.4	26
177	Defining the role of endothelins in renal pathophysiology on the basis of selective and unselective endothelin receptor antagonist studies. Current Opinion in Nephrology and Hypertension, 1995, 4, 349-353.	1.0	25
178	BRAF Signaling Pathway Inhibition, Podocyte Injury, and Nephrotic Syndrome. American Journal of Kidney Diseases, 2017, 70, 145-150.	2.1	25
179	The role of B7-1 in proteinuria of glomerular origin. Nature Reviews Nephrology, 2018, 14, 589-596.	4.1	25
180	Eculizumab in patients with severe coronavirus disease 2019 (COVID-19) requiring continuous positive airway pressure ventilator support: Retrospective cohort study. PLoS ONE, 2021, 16, e0261113.	1.1	25

#	Article	IF	CITATIONS
181	Inhibition of Human Platelet Aggregation by Parathyroid Hormone. American Journal of Nephrology, 1985, 5, 243-247.	1.4	24
182	Mitochondrial-dependent Autoimmunity in Membranous Nephropathy of IgG4-related Disease. EBioMedicine, 2015, 2, 456-466.	2.7	24
183	Research on renal endothelin in proteinuric nephropathies dictates novel strategies to prevent progression. Current Opinion in Nephrology and Hypertension, 2001, 10, 1-6.	1.0	23
184	Unrecognized Pattern of von Willebrand Factor Abnormalities in Hemolytic Uremic Syndrome and Thrombotic Thrombocytopenic Purpura. Journal of the American Society of Nephrology: JASN, 1999, 10, 1234-1241.	3.0	23
185	Urinary excretion of platelet activating factor in patients with immune-mediated glomerulonephritis. Kidney International, 1993, 43, 426-429.	2.6	22
186	$\hat{l}\pm 1$ -antitrypsin therapy in a case of thrombotic thrombocytopenic purpura. Lancet, The, 1995, 345, 224-225.	6.3	22
187	A previously unrecognized role of C3a in proteinuric progressive nephropathy. Scientific Reports, 2016, 6, 28445.	1.6	22
188	Methylprednisolone dosage effects on peripheral lymphocyte subpopulations and eicosanoid synthesis. Kidney International, 1992, 42, 981-990.	2.6	21
189	DnlKK2-Transfected Dendritic Cells Induce a Novel Population of Inducible Nitric Oxide Synthase???Expressing CD4+CD25??? Cells with Tolerogenic Properties. Transplantation, 2007, 83, 474-484.	0.5	21
190	Rabbit anti-rat thymocyte immunoglobulin preserves renal function during ischemia/reperfusion injury in rat kidney transplantation. Transplant International, 2011, 24, 829-838.	0.8	21
191	Alteration of thyroid hormone signaling triggers the diabetes-induced pathological growth, remodeling, and dedifferentiation of podocytes. JCI Insight, 2019, 4, .	2.3	21
192	Empagliflozin protects glomerular endothelial cell architecture in experimental diabetes through the <scp>VEGFâ€A</scp> /caveolinâ€1/ <scp>PV</scp> â€1 signaling pathway. Journal of Pathology, 2022, 256, 468-479.	2.1	21
193	Endothelin receptor selectivity in chronic renal failure. European Journal of Clinical Investigation, 2009, 39, 32-37.	1.7	20
194	The Role of Angiotensin II in Parietal Epithelial Cell Proliferation and Crescent Formation in Glomerular Diseases. American Journal of Pathology, 2017, 187, 2441-2450.	1.9	20
195	Endothelin receptor antagonists: which are the therapeutic perspectives in renal diseases?. Nephrology Dialysis Transplantation, 1998, 13, 5-7.	0.4	18
196	Primer: strategies for identifying genes involved in renal disease. Nature Clinical Practice Nephrology, 2008, 4, 265-276.	2.0	18
197	Atrial natriuretic peptide and prostacyclin synergistically mediate hyperfiltration and hyperperfusion of diabetic rats. Diabetes, 1992, 41, 533-538.	0.3	18
198	Renal Primordia Activate Kidney Regenerative Events in a Rat Model of Progressive Renal Disease. PLoS ONE, 2015, 10, e0120235.	1.1	17

#	Article	IF	CITATIONS
199	ET and Diabetic Nephropathy: Preclinical and Clinical Studies. Seminars in Nephrology, 2015, 35, 188-196.	0.6	17
200	Endothelin-targeted new treatments for proteinuric and inflammatory glomerular diseases: focus on the added value to anti-renin-angiotensin system inhibition. Pediatric Nephrology, 2021, 36, 763-775.	0.9	17
201	Sirtuin3 Dysfunction Is the Key Determinant of Skeletal Muscle Insulin Resistance by Angiotensin II. PLoS ONE, 2015, 10, e0127172.	1.1	16
202	Key pathways in renal disease progression of experimental diabetes: FigureÂ1:. Nephrology Dialysis Transplantation, 2015, 30, iv54-iv59.	0.4	16
203	Transplantation-Induced Ischemia-Reperfusion Injury Modulates Antigen Presentation by Donor Renal CD11c+F4/80+ Macrophages through IL-1R8 Regulation. Journal of the American Society of Nephrology: JASN, 2020, 31, 517-531.	3.0	16
204	Functional implications of decreased renal cortical atrial natriuretic peptide binding in experimental diabetes Circulation Research, 1990, 66, 1453-1460.	2.0	15
205	SYMPOSIUM Experimental Biology 1995 Endothelin Receptors: Role in Renal Function and Dysfunction ENDOTHELIN IS A KEY MODULATOR OF PROGRESSIVE RENAL INJURY: EXPERIMENTAL DATA AND NOVEL THERAPEUTIC STRATEGIES. Clinical and Experimental Pharmacology and Physiology, 1996, 23, 349-353.	0.9	15
206	Increased concentrations of antiangiogenic factors in mirror syndrome complicating twinâ€ŧoâ€ŧwin transfusion syndrome. Prenatal Diagnosis, 2010, 30, 378-379.	1.1	15
207	Endothelin in Chronic Proteinuric Kidney Disease. Contributions To Nephrology, 2011, 172, 171-184.	1.1	15
208	Nonviral and Viral Gene Transfer to the Kidney in the Context of Transplantation. Nephron, 2000, 85, 307-316.	0.9	14
209	A novel interpretation of the role of von Willebrand factor in thrombotic microangiopathies based on platelet adhesion studies at high shear rate flow. American Journal of Kidney Diseases, 2000, 36, 695-702.	2.1	14
210	Gene Therapy: How to Target the Kidney. Promises and Pitfalls. Current Gene Therapy, 2004, 4, 115-122.	0.9	14
211	Combining lisinopril and L-arginine slows disease progression and reduces endothelin-1 in passive Heymann nephritis. Kidney International, 2003, 64, 857-863.	2.6	13
212	Adenoviral-mediated gene transfer restores plasma ADAMTS13 antigen and activity in ADAMTS13 knockout mice. Gene Therapy, 2009, 16, 1373-1379.	2.3	13
213	Repairing renal lesions: Will VEGF be the builder?. Kidney International, 2000, 58, 2594-2595.	2.6	12
214	Favorable Effect of Cotransfection with TGF-β and CTLA4Ig of the Donor Kidney on Allograft Survival. American Journal of Nephrology, 2004, 24, 275-283.	1.4	12
215	The potential of endothelin antagonism as a therapeutic approach. Expert Opinion on Investigational Drugs, 2004, 13, 1419-1435.	1.9	12
216	Effects of Rosuvastatin on Glomerular Capillary Size-Selectivity Function in Rats with Renal Mass Ablation. American Journal of Nephrology, 2007, 27, 630-638.	1.4	12

#	Article	IF	CITATIONS
217	Potential of mesenchymal stem cells in the repair of tubular injury. Kidney International Supplements, 2011, 1, 90-93.	4.6	12
218	EGF receptor–mediated FUS phosphorylation promotes its nuclear translocation and fibrotic signaling. Journal of Cell Biology, 2020, 219, .	2.3	12
219	Preliminary report: renal thromboxane A2 synthesis in children with frequent relapsing nephrotic syndrome. Lancet, The, 1990, 336, 533-534.	6.3	11
220	The renoprotective potential of endothelin receptor antagonists. Expert Opinion on Therapeutic Patents, 1997, 7, 139-149.	2.4	11
221	Inhibiting angiotensin-converting enzyme promotes renal repair by modulating progenitor cell activation. Pharmacological Research, 2016, 108, 16-22.	3.1	11
222	Impact of a Complement Factor H Gene Variant on Renal Dysfunction, Cardiovascular Events, and Response to ACE Inhibitor Therapy in Type 2 Diabetes. Frontiers in Genetics, 2019, 10, 681.	1.1	11
223	CFH and CFHR Copy Number Variations in C3 Glomerulopathy and Immune Complex-Mediated Membranoproliferative Glomerulonephritis. Frontiers in Genetics, 2021, 12, 670727.	1.1	11
224	Xenotransplantation in the 21st Century. Blood Purification, 2002, 20, 45-54.	0.9	10
225	Impediments to successful gene transfer to the kidney in the context of transplantation and how to overcome them. Kidney International, 2002, 61, S115-S119.	2.6	10
226	Towards graft-specific immune suppression: Gene therapy of the transplanted kidneyâ [†] t. Advanced Drug Delivery Reviews, 2010, 62, 1358-1368.	6.6	10
227	Local gene therapy with indoleamine 2,3-dioxygenase protects against development of transplant vasculopathy in chronic kidney transplant dysfunction. Gene Therapy, 2016, 23, 797-806.	2.3	10
228	A new BEACON of hope for the treatment of inflammation? The endogenous metabolite itaconate as an alternative activator of the KEAP1-Nrf2 system. Kidney International, 2018, 94, 646-649.	2.6	10
229	Role of ultrastructural determinants of glomerular permeability in ultrafiltration function loss. JCI Insight, 2020, 5, .	2.3	10
230	Post-translational modifications by SIRT3 de-2-hydroxyisobutyrylase activity regulate glycolysis and enable nephrogenesis. Scientific Reports, 2021, 11, 23580.	1.6	10
231	Novel strategies to retard renal disease progression: combining ACE inhibition with endothelin receptor blocking?. Nephrology Dialysis Transplantation, 1998, 13, 2734-2738.	0.4	9
232	An Unanticipated Role for Survivin in Organ Transplant Damage. American Journal of Transplantation, 2014, 14, 1046-1060.	2.6	9
233	Metabolism of arachidonic acid in isolated glomeruli from pig kidney. Lipids and Lipid Metabolism, 1988, 961, 110-121.	2.6	8
234	Abnormalities of Arachidonate Metabolism in Experimental Ciclosporin Nephrotoxicity. American Journal of Nephrology, 1989, 9, 72-77.	1.4	8

#	Article	IF	Citations
235	The role of vasoactive molecules of endothelial origin in the pathophysiology of normal pregnancy and pregnancy-induced hypertension. Current Opinion in Nephrology and Hypertension, 1996, 5, 347-352.	1.0	8
236	Transplant tolerance: will genes protect the graft?. Lancet, The, 1998, 351, 1749-1751.	6.3	8
237	Post-Transcriptional Gene Regulation Makes Things Clearer in Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2013, 24, 1026-1028.	3.0	8
238	Another Piece of the Puzzle of Podocyte B7-1 Expression: Lupus Nephritis. Nephron, 2016, 133, 129-138.	0.9	8
239	ADAMTS13 Deficiency Shortens the Life Span of Mice With Experimental Diabetes. Diabetes, 2018, 67, 2069-2083.	0.3	8
240	Molecular Studies and an ex vivo Complement Assay on Endothelium Highlight the Genetic Complexity of Atypical Hemolytic Uremic Syndrome: The Case of a Pedigree With a Null CD46 Variant. Frontiers in Medicine, 2020, 7, 579418.	1.2	8
241	Fluid Shear Stress Modulates von Willebrand Factor Release From Human Vascular Endothelium. Blood, 1997, 90, 1558-1564.	0.6	8
242	Quantitative thin-layer chromatographic measurement of N-trifluoroacetyladriamycin-14-valerate (AD) Tj ETQq0	0 0 rgBT / 1.7	Overlock 10 T 7
243	Renal metabolism and urinary excretion of thromboxane B2 in the rat. American Journal of Physiology - Renal Physiology, 1989, 257, F77-F85.	1.3	7
244	Tubulointerstitial disease mediators of injury: the role of endothelin. Nephrology Dialysis Transplantation, 2000, 15, 50-52.	0.4	7
245	Allograft Rejection: Acute and Chronic Studies. , 2008, 159, 122-134.		7
246	Reply to the Comment by Dr. Cure on "Should COVID-19 Concern Nephrologists? Why and to What Extent? The Emerging Impasse of Angiotensin Blockade― Nephron, 2020, 144, 253-254.	0.9	7
247	Angiotensin-converting enzyme 2: from a vasoactive peptide to the gatekeeper of a global pandemic. Current Opinion in Nephrology and Hypertension, 2021, 30, 252-263.	1.0	7
248	Metabolism of thromboxane B2 in the isolated perfused rat kidney: mass spectrometric identification of urinary products. Lipids and Lipid Metabolism, 1989, 1006, 167-172.	2.6	6
249	Identification of a Novel Geneâ€"SSK1â€"in Human Endothelial Cells Exposed to Shear Stress. Biochemical and Biophysical Research Communications, 1998, 246, 881-887.	1.0	6
250	Autotaxin Inhibitor Protects from Chronic Allograft Injury in Rat Kidney Allotransplantation. Nephron, 2020, 144, 38-48.	0.9	6
251	Proteins Abnormally Filtered Throughout Glomerular Capillary Have an Intrinsic Renal Toxicity. Contributions To Nephrology, 1996, 118, 164-172.	1.1	5
252	Genetics of rare diseases of the kidney: learning from mouse models. Cytogenetic and Genome Research, 2004, 105, 479-484.	0.6	5

#	Article	lF	CITATIONS
253	Effect of Seliciclib (CYC202, R-Roscovitine) on Lymphocyte Alloreactivity and Acute Kidney Allograft Rejection in Rat. Transplantation, 2008, 85, 1476-1482.	0.5	5
254	Drugs to Foster Kidney Regeneration in Experimental Animals and Humans. Nephron Experimental Nephrology, 2014, 126, 91-96.	2.4	5
255	Untangling the Knot in Diabetic Nephropathy: The Unanticipated Role of Glycocalyx in the Antiproteinuric Effect of Endothelin Receptor Antagonists. Diabetes, 2016, 65, 2115-2117.	0.3	5
256	The iNADequacy of renal cell metabolism: modulating NAD+ biosynthetic pathways to forestall kidney diseases. Kidney International, 2019, 96, 264-267.	2.6	5
257	Characterization of a Rat Model of Myeloperoxidase-Anti-Neutrophil Cytoplasmic Antibody-Associated Crescentic Glomerulonephritis. Nephron, 2021, 145, 428-444.	0.9	5
258	Inflammation and glomerular injury. Seminars in Immunopathology, 1994, 16, 39-51.	4.0	4
259	The role of eicosanoids in the pathogenesis of hemolytic uremic syndrome. Prostaglandins Leukotrienes and Essential Fatty Acids, 1994, 51, 75-79.	1.0	4
260	Pharmacological Induction of Kidney Regeneration., 2017,, 1025-1037.		4
261	CRISPR-Cas9-Mediated Correction of the G189R-PAX2 Mutation in Induced Pluripotent Stem Cells from a Patient with Focal Segmental Glomerulosclerosis. CRISPR Journal, 2019, 2, 108-120.	1.4	4
262	The incessant search for renal biomarkers. Current Opinion in Nephrology and Hypertension, 2019, 28, 195-202.	1.0	4
263	Human iPSC-derived neural crest stem cells can produce EPO and induce erythropoiesis in anemic mice. Stem Cell Research, 2021, 55, 102476.	0.3	4
264	Sirtuin 3 in acute kidney injury. Oncotarget, 2015, 6, 16814-16815.	0.8	4
265	Interleukin-6 stimulates gene expression of extracellular matrix components in bovine mesangial cells in culture. Mediators of Inflammation, 1993, 2, 429-433.	1.4	3
266	Treatment of Chronic Proteinuric Kidney Disease. Hypertension, 2009, 54, 29-31.	1.3	3
267	Generation of two isogenic knockout PKD2 iPS cell lines, IRFMNi003-A-1 and IRFMNi003-A-2, using CRISPR/Cas9 technology. Stem Cell Research, 2020, 42, 101667.	0.3	3
268	Genes and molecular medicine in the future of organ transplantation. Current Opinion in Organ Transplantation, 1999, 4, 65.	0.8	3
269	Imaging the Kidney with an Unconventional Scanning Electron Microscopy Technique: Analysis of the Subpodocyte Space in Diabetic Mice. International Journal of Molecular Sciences, 2022, 23, 1699.	1.8	3
270	Shiga Toxin 2 Triggers C3a-Dependent Glomerular and Tubular Injury through Mitochondrial Dysfunction in Hemolytic Uremic Syndrome. Cells, 2022, 11, 1755.	1.8	3

#	Article	IF	CITATIONS
271	Prostacyclin and Thromboxane and the Development of Preeclampsia. JAMA - Journal of the American Medical Association, 2000, 283, 1568.	3.8	2
272	The Goal of Intragraft Gene Therapy. , 2004, 146, 143-150.		2
273	Hemolytic Uremic Syndrome in an Infant with Primary Hyperoxaluria Type II: An Unreported Clinical Association. Nephron, 2019, 142, 264-270.	0.9	2
274	Proteinuria and Tubulotoxicity., 2019, , 197-214.		2
275	Unravelling the Role of PAX2 Mutation in Human Focal Segmental Glomerulosclerosis. Biomedicines, 2021, 9, 1808.	1.4	2
276	Therapeutic Small Interfering RNA Targeting Complement C3 in a Mouse Model of C3 Glomerulopathy. Journal of Immunology, 2022, 208, 1772-1781.	0.4	2
277	Gene Therapy to the Kidney. , 2001, 136, 140-156.		1
278	Protective Effects of Human Nonrenal and Renal Stromal Cells and Their Conditioned Media in a Rat Model of Chronic Kidney Disease. Cell Transplantation, 2020, 29, 096368972096546.	1.2	1
279	Generation of PKD1 mono-allelic and bi-allelic knockout iPS cell lines using CRISPR-Cas9 system. Stem Cell Research, 2020, 47, 101881.	0.3	1
280	SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and Complement System Leading to Thrombus Formation. SSRN Electronic Journal, 0, , .	0.4	1
281	The Onset and Resolution of Renal Fibrosis. , 2016, , 351-366.		1
282	Introduction: Forefronts in Endothelin / Introduction : Progrès des conaissances sur l'endothéline. Canadian Journal of Physiology and Pharmacology, 2008, 86, v-vi.	0.7	0
283	Introduction. Canadian Journal of Physiology and Pharmacology, 2010, 88, v.	0.7	0
284	Will fish foster regenerative medicine in man?. Nephrology Dialysis Transplantation, 2011, 26, 2107-2109.	0.4	0
285	Cells for Treating Organ Damage: How Long Will We Need Them?. Journal of the American Society of Nephrology: JASN, 2011, 22, 590-592.	3.0	0
286	â€~Remodeling' <i>Nephron</i> . Nephron, 2015, 129, 1-2.	0.9	0
287	Life and Death of Podocytes: Not Only a Matter of Vascular Endothelial Growth Factor. American Journal of Nephrology, 2016, 43, 71-73.	1.4	0
288	AAV9-mediated engineering of autotransplanted kidney of non-human primates. Gene Therapy, 2017, 24, 308-313.	2.3	0

#	ARTICLE	lF	CITATIONS
289	Generation of two isogenic iPS cell lines (IRFMNi002-A and IRFMNi002-B) from a patient affected by Focal Segmental Glomerulosclerosis carrying a heterozygous c.565G>A mutation in PAX2 gene. Stem Cell Research, 2018, 33, 175-179.	0.3	0
290	Sirtuins as key players in aging and kidney dysfunction. , 2021, , 309-328.		0
291	Molecular Medicine in Organ Transplantation: How and When?. , 2001, , 317-334.		0
292	Role of Transforming Growth Factor-l̂² in the Kidney — Physiology and Pathology. , 2008, , 167-179.		0
293	Aspirin in Hypertension of Pregnancy. , 1992, , 93-105.		O
294	CHAPTER 5. Regulation and Function of MicroRNAs in Kidney Diseases. RSC Drug Discovery Series, 2019, , 133-155.	0.2	0
295	Therapeutic Options for Preventing Transplant-Related Progressive Renal and Vascular Injury. , 2008, , 128-136.		0