En-Bo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4655839/publications.pdf

Version: 2024-02-01

57758 62596 7,264 137 44 80 citations h-index g-index papers 143 143 143 6098 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polyoxometalateâ€Derived Multiâ€Component X/W ₂ C@X,Nâ€C (X=Co, Si, Ge, B, and P) Nanoelectrocatalysts for Efficient Triiodide Reduction in Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2020, 26, 4104-4111.	3.3	17
2	Keggin and Dawson polyoxometalates as electrodes for flexible and transparent piezoelectric nanogenerators to efficiently utilize mechanical energy in the environment. Science Bulletin, 2020, 65, 35-44.	9.0	28
3	Interfacial self-assembly engineering for constructing a 2D flexible superlattice polyoxometalate/rGO heterojunction for high-performance photovoltaic devices. Dalton Transactions, 2020, 49, 3766-3774.	3.3	11
4	Pt/POMs/TiO ₂ composite nanofibers with an enhanced visible-light photocatalytic performance for environmental remediation. Dalton Transactions, 2019, 48, 13353-13359.	3.3	37
5	Hierarchical Structure Superlattice P ₂ Mo ₁₈ /MoS ₂ @C Nanocomposites: A Kind of Efficient Counter Electrode Materials for Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2019, 2, 5824-5834.	5.1	30
6	Reduced State of the Graphene Oxide@Polyoxometalate Nanocatalyst Achieving High-Efficiency Nitrogen Fixation under Light Driving Conditions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 37927-37938.	8.0	45
7	Ag _x H _{3â^'x} PMo ₁₂ O ₄₀ /Ag nanorods/g-C ₃ N ₄ 1D/2D Z-scheme heterojunction for highly efficient visible-light photocatalysis. Dalton Transactions, 2019, 48, 6484-6491.	3.3	32
8	Dawson-type polyoxometalate-based vacancies <i>g</i> -C ₃ N ₄ composite-nanomaterials for efficient photocatalytic nitrogen fixation. Inorganic Chemistry Frontiers, 2019, 6, 3315-3326.	6.0	32
9	Polyoxometalates in dye-sensitized solar cells. Chemical Society Reviews, 2019, 48, 260-284.	38.1	261
10	A Strategy to Obtain Longâ€Term Stable Heteropoly Blues for Photosensitive Property Investigations. Advanced Optical Materials, 2018, 6, 1800225.	7.3	25
11	Graphene with cobalt oxide and tungsten carbide as a low-cost counter electrode catalyst applied in Pt-free dye-sensitized solar cells. Journal of Power Sources, 2018, 380, 18-25.	7.8	49
12	Polyoxometalate/TiO2/Ag composite nanofibers with enhanced photocatalytic performance under visible light. Applied Catalysis B: Environmental, 2018, 221, 280-289.	20.2	136
13	Noble-metal-free ternary CN–ZCS–NiS nanocomposites for enhanced solar photocatalytic H ₂ -production activity. Dalton Transactions, 2018, 47, 1171-1178.	3.3	20
14	Dimethyltin-functionalized cyclic selenotungstates based on {Se ₂ W ₁₂ } units. Dalton Transactions, 2018, 47, 1393-1397.	3. 3	6
15	An unprecedented {Cull14TelV10} core incorporated in a 36-tungsto-4-silicate polyoxometalate with visible light-driven catalytic hydrogen evolution activity. Dalton Transactions, 2018, 47, 16403-16407.	3.3	14
16	rGO Functionalized with a Highly Electronegative Keplerateâ€Type Polyoxometalate for Highâ€Energyâ€Density Aqueous Asymmetric Supercapacitors. Chemistry - an Asian Journal, 2018, 13, 3304-3313.	3. 3	38
17	Sandwich-type silicotungstate modified TiO ₂ microspheres for enhancing light harvesting and reducing electron recombination in dye-sensitized solar cells. Inorganic Chemistry Frontiers, 2017, 4, 559-565.	6.0	22
18	Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy and Environmental Science, 2017, 10, 788-798.	30.8	629

#	Article	IF	Citations
19	Low-cost p-type dye-sensitized solar cells based on Dawson-type transition metal-substituted polyoxometalate inorganic co-sensitizers. Inorganic Chemistry Frontiers, 2017, 4, 1187-1191.	6.0	13
20	Bio-inspired assembly of cubane-adjustable polyoxometalate-based high-nuclear nickel clusters for visible light-driven hydrogen evolution. Applied Catalysis B: Environmental, 2017, 211, 349-356.	20.2	45
21	A Strategy to Enhance the Efficiency of Quantum Dotâ€Sensitized Solar Cells by Decreasing Electron Recombination with Polyoxometalate/TiO ₂ as the Electronic Interface Layer. ChemSusChem, 2017, 10, 2945-2954.	6.8	19
22	A Strategy for Breaking Polyoxometalateâ€based MOFs To Obtain High Loading Amounts of Nanosized Polyoxometalate Clusters to Improve the Performance of Dyeâ€sensitized Solar Cells. Chemistry - A European Journal, 2017, 23, 8871-8878.	3.3	31
23	Oxidative Polyoxometalates Modified Graphitic Carbon Nitride for Visible-Light CO ₂ Reduction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11689-11695.	8.0	122
24	Ag/Ag _{<i>x</i>} H _{3–<i>x</i>} PMo ₁₂ O ₄₀ Nanowires with Enhanced Visible-Light-Driven Photocatalytic Performance. ACS Applied Materials & Diterfaces, 2017, 9, 422-430.	8.0	75
25	A Reusable Nâ€Dopedâ€Carbonâ€Coated Mo ₂ C Composite Counter Electrode for Highâ€Efficiency Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2017, 23, 17311-17317.	3.3	36
26	N-doped graphene supported W C composite material as an efficient non-noble metal electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2017, 251, 660-671.	5.2	25
27	Micelleâ€Directing Synthesis of Agâ€Doped WO ₃ and MoO ₃ Composites for Photocatalytic Water Oxidation and Organicâ€Dye Adsorption. Chemistry - an Asian Journal, 2017, 12, 2597-2603.	3.3	21
28	Three Kegginâ€Type Transition Metalâ€Substituted Polyoxometalates as Pure Inorganic Photosensitizers for pâ€Type Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2016, 22, 3234-3238.	3.3	22
29	Assembly of Mn-Containing Unprecedented Selenotungstate Clusters with Photocatalytic H ₂ Evolution Activity. Crystal Growth and Design, 2016, 16, 2481-2486.	3.0	21
30	Highly Dispersed Polyoxometalateâ€Doped Porous Co ₃ O ₄ Water Oxidation Photocatalysts Derived from POM@MOF Crystalline Materials. Chemistry - A European Journal, 2016, 22, 15513-15520.	3.3	87
31	Assembly of polyoxometalates and Ni-bpy cationic units into the molecular core–shell structures as bifunctional electrocatalysts. RSC Advances, 2016, 6, 99010-99015.	3.6	18
32	Encapsulation of tungstophosphoric acid into harmless MIL-101(Fe) for effectively removing cationic dye from aqueous solution. RSC Advances, 2016, 6, 81622-81630.	3.6	48
33	Keplerate-type polyoxometalate/semiconductor composite electrodes with light-enhanced conductivity towards highly efficient photoelectronic devices. Journal of Materials Chemistry A, 2016, 4, 14025-14032.	10.3	49
34	TiO2 film decorated with highly dispersed polyoxometalate nanoparticles synthesized by micelle directed method for the efficiency enhancement of dye-sensitized solar cells. Journal of Power Sources, 2016, 328, 1-7.	7.8	24
35	A carbon-free polyoxometalate molecular catalyst with a cobalt–arsenic core for visible light-driven water oxidation. Chemical Communications, 2016, 52, 9514-9517.	4.1	37
36	Pure inorganic D–A type polyoxometalate/reduced graphene oxide nanocomposite for the photoanode of dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 3297-3303.	10.3	37

#	Article	IF	Citations
37	Trimeric hexa-dimethyltin-functionalized selenotungstate [{Sn(CH ₃ (Sn(CH ₃) ₂ 2CrystEngComm, 2016, 18, 2820-2824.	>2 }.6 sub>3	⊲ ⊈ ub>{Se
38	Polyoxometalate-based supramolecular architecture constructed from a purely inorganic 1D chain and a metal–organic layer with efficient catalytic activity. RSC Advances, 2016, 6, 15513-15517.	3.6	24
39	The improved efficiency of quantum-dot-sensitized solar cells with a wide spectrum and pure inorganic donor–acceptor type polyoxometalate as a collaborative cosensitizer. Journal of Materials Chemistry A, 2016, 4, 4125-4133.	10.3	31
40	Polyoxometalate-assisted synthesis of transition-metal cubane clusters as artificial mimics of the oxygen-evolving center of photosystem II. Coordination Chemistry Reviews, 2016, 313, 94-110.	18.8	111
41	Cation-mediated optical resolution and anticancer activity of chiral polyoxometalates built from entirely achiral building blocks. Chemical Science, 2016, 7, 4220-4229.	7.4	87
42	Extended structural materials composed of transition-metal-substituted arsenicniobates and their photocatalytic activity. RSC Advances, 2015, 5, 44198-44203.	3.6	40
43	Assembly of tetrameric dimethyltin-functionalized selenotungstates: from nanoclusters to one-dimensional chains. Chemical Communications, 2015, 51, 2433-2436.	4.1	22
44	Assembly of Large Purely Inorganic Ceâ€Stabilized/Bridged Selenotungstates: From Nanoclusters to Layers. Chemistry - an Asian Journal, 2015, 10, 1184-1191.	3.3	13
45	Photosensitive polyoxometalate-induced formation of thermotropic liquid crystal nanomaterial and its photovoltaic effect. RSC Advances, 2015, 5, 8194-8198.	3.6	6
46	Electrospun Cr-doped Bi ₄ Ti ₃ O ₁₂ /Bi ₂ Ti _{O₇ heterostructure fibers with enhanced visible-light photocatalytic properties. Journal of Materials Chemistry A, 2015, 3, 6586-6591.}	10.3	67
47	Enhanced Visible Photovoltaic Response of TiO ₂ Thin Film with an All-Inorganic Donor–Acceptor Type Polyoxometalate. ACS Applied Materials & Donor†(1975) (8.0	78
48	A strategy for breaking the MOF template to obtain small-sized and highly dispersive polyoxometalate clusters loaded on solid films. Journal of Materials Chemistry A, 2015, 3, 14573-14577.	10.3	25
49	Recent progress in polyoxoniobates decorated and stabilized via transition metal cations or clusters. CrystEngComm, 2015, 17, 6261-6268.	2.6	51
50	Polyoxometalate-Based Nickel Clusters as Visible Light-Driven Water Oxidation Catalysts. Journal of the American Chemical Society, 2015, 137, 5486-5493.	13.7	341
51	Chiral recognition and selection during the self-assembly process of protein-mimic macroanions. Nature Communications, 2015, 6, 6475.	12.8	66
52	The assembly of vanadium(<scp>iv</scp>)-substituted Keggin-type polyoxometalate/graphene nanocomposite and its application in photovoltaic system. Journal of Materials Chemistry A, 2015, 3, 10174-10178.	10.3	30
53	Co-sensitization promoted light harvesting with a new mixed-addenda polyoxometalate [Cu(C ₁₂ H ₈ N ₂) ₂] ₂ [V ₂ W _{4<td>susb⊛O∢sul</td><td>b≱819</td>}	s usb ⊛O∢sul	b ≱ 819
54	Heterometallic 3d–4f cluster-containing polyoxotungstate obtained by partial disassembly of preformed large clusters. RSC Advances, 2015, 5, 76206-76210.	3.6	15

#	Article	IF	Citations
55	Series of Organic–Inorganic Hybrid Rare Earth Derivatives Based on [MnV ₁₃ O ₃₈] ^{7–} Polyoxoanion: Syntheses, Structures, and Magnetic and Electrochemical Properties. Crystal Growth and Design, 2015, 15, 103-114.	3.0	27
56	Crown Inorganic–Organic Hybrid Composed of Copper-Amino Acid Rings and the Classical Keggin Polyoxoanions. Journal of Cluster Science, 2014, 25, 253-259.	3.3	4
57	Polyoxometalate supported complexes as effective electron-transfer mediators in dye-sensitized solar cells. Dalton Transactions, 2014, 43, 1493-1497.	3.3	21
58	Design and construction of a thermotropic liquid crystal material based on high-nuclear transition-metal cluster-containing polyoxometalates. RSC Advances, 2014, 4, 43806-43810.	3.6	4
59	Two carboxyethyltin functionalized polyoxometalates for assembly on carbon nanotubes as efficient counter electrode materials in dye-sensitized solar cells. Chemical Communications, 2014, 50, 14678-14681.	4.1	56
60	A cobalt-containing pseudosandwich-type polyoxometalate based on a lacunary Lindqvist polyoxovanadate. CrystEngComm, 2014, 16, 1187.	2.6	9
61	Self-assembly and thermotropic liquid crystal properties of a hexavacant germanomolybdate: [Ge2Mo16O58]12â^'. CrystEngComm, 2014, 16, 6784.	2.6	4
62	A Novel Carboxyethyltin Functionalized Sandwich-type Germanotungstate: Synthesis, Crystal Structure, Photosensitivity, and Application in Dye-Sensitized Solar Cells. ACS Applied Materials & Lamp; Interfaces, 2014, 6, 7876-7884.	8.0	71
63	The photovoltaic performance of dye-sensitized solar cells enhanced by using Dawson-type heteropolyacid and heteropoly blue-TiO2 composite films as photoanode. Inorganic Chemistry Communication, 2014, 47, 138-143.	3.9	18
64	Assembly of Fe-substituted Dawson-type nanoscale selenotungstate clusters with photocatalytic H ₂ evolution activity. Chemical Communications, 2014, 50, 13265-13267.	4.1	55
65	Polyoxometalate-Based Cobalt–Phosphate Molecular Catalysts for Visible Light-Driven Water Oxidation. Journal of the American Chemical Society, 2014, 136, 5359-5366.	13.7	414
66	Polyoxometalate/TiO ₂ Interfacial Layer with the Function of Accelerating Electron Transfer and Retarding Recombination for Dye-Sensitized Solar Cells. Industrial & Engineering Chemistry Research, 2014, 53, 150-156.	3.7	35
67	Assembly of Keggin-/Dawson-type Polyoxotungstate Clusters with Different Metal Units and SeO ₃ ^{2–} Heteroanion Templates. Crystal Growth and Design, 2014, 14, 5099-5110.	3.0	39
68	Grafting Transition Metal–Organic Fragments onto W/Ta Mixedâ€Addendum Nanoclusters for Broadâ€Spectrumâ€Driven Photocatalysis. ChemPlusChem, 2014, 79, 1153-1158.	2.8	11
69	The research of employing polyoxometalates as pure-inorganic electron-transfer mediators on dye-sensitized solar cells. Inorganic Chemistry Communication, 2014, 46, 89-93.	3.9	10
70	Assembly of Cerium(III)â€6tabilized Polyoxotungstate Nanoclusters with SeO ₃ ^{2â°'} /TeO ₃ ^{2â°'} Templates: From Single Polyoxoanions to Inorganic Hollow Spheres in Dilute Solution. Chemistry - A European Journal, 2013, 19, 11007-11015.	3.3	83
71	Assembly of chainlike polyoxometalate-based lanthanide complexes in one-pot reaction system. CrystEngComm, 2013, 15, 7267.	2.6	38
72	The Application of ZnO Nanoparticles Containing Polyoxometalates in Dye-Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2013, 2013, 1951-1959.	2.0	22

#	Article	IF	Citations
73	Integration of Lnâ€Sandwich POMs into Molecular Porous Systems Leading to Selfâ€Assembly of Metal–POM Framework Materials. European Journal of Inorganic Chemistry, 2013, 2013, 4770-4774.	2.0	21
74	A polyoxometalate-based ionic crystal assembly from a heterometallic cluster and polyoxoanions with visible-light catalytic activity. RSC Advances, 2013, 3, 20829.	3.6	31
75	A new electrodeposition approach for preparing polyoxometalates-based electrochromic smart windows. Journal of Materials Chemistry A, 2013, 1, 216-220.	10.3	59
76	Polyoxometalate–anatase TiO2 composites are introduced into the photoanode of dye-sensitized solar cells to retard the recombination and increase the electron lifetime. Dalton Transactions, 2013, 42, 2691.	3.3	58
77	A photovoltaic system composed of a keplerate-type polyoxometalate and a water-soluble poly(p-phenylenevinylene) derivative. Journal of Materials Chemistry A, 2013, 1, 6727.	10.3	26
78	Expansion of sodalite-type metal–organic frameworks with heterometallic metal–oxo cluster and its cation exchange property. CrystEngComm, 2013, 15, 459-462.	2.6	14
79	The research of a new polyoxometalates based photosensitizer on dye sensitized solar cell. Inorganic Chemistry Communication, 2013, 38, 78-82.	3.9	25
80	Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framework based on $[V \leq 4 / c] = 12 / c$ Self-assembly of a 3-D self-catenated framewo	2.2	4
81	Thermotropic liquid crystals built from organic–inorganic hybrid polyoxometalates and a simple cationic surfactant. Journal of Materials Chemistry C, 2013, 1, 3681.	5.5	26
82	Electropolymerization Polyoxometalate (POM)-Doped PEDOT Film Electrodes with Mastoid Microstructure and Its Application in Dye-Sensitized Solar Cells (DSSCs). Industrial & Engineering Chemistry Research, 2013, 52, 6694-6703.	3.7	36
83	Extended structure constructed from sandwich-type tungstoantimonites fused together by water substitution on the sandwiching metal centers. Journal of Coordination Chemistry, 2012, 65, 1443-1450.	2.2	4
84	A (3,6)-connected metal-organic framework consisting of chair-like {Fe6} clusters and BTC linkers. Journal of Coordination Chemistry, 2012, 65, 48-54.	2.2	6
85	A long-term stable Pt counter electrode modified by POM-based multilayer film for high conversion efficiency dye-sensitized solar cells. Dalton Transactions, 2012, 41, 2227.	3.3	32
86	Review: The chirality and bionic studies of polyoxometalates: the synthetic strategy and structural chemistry. Journal of Coordination Chemistry, 2012, 65, 1-18.	2.2	18
87	Polyoxometalate-assisted synthesis of the ZnO polyhedra in an alkali solution and their photoelectrical properties. Materials Letters, 2012, 87, 39-42.	2.6	10
88	Polyoxometalate-based crystalline tubular microreactor: redox-active inorganic–organic hybrid materials producing gold nanoparticles and catalytic properties. Chemical Science, 2012, 3, 705-710.	7.4	93
89	Assembly of new organic–inorganic hybrids based on copper-bis(triazole) complexes and Keggin-type polyoxometalates with different negative charges. CrystEngComm, 2012, 14, 6573.	2.6	36
90	Redox-active polyoxometalate-based crystalline material-immobilized noble metal nanoparticles: spontaneous reduction and synergistic catalytic activity. Journal of Materials Chemistry, 2012, 22, 21040.	6.7	22

#	Article	IF	CITATIONS
91	Three 3D Metal–Quinolone Complexes Based on Trimetallic or Rodâ€Shaped Secondary Building Units. European Journal of Inorganic Chemistry, 2012, 2012, 1783-1789.	2.0	8
92	An Ionothermal Synthetic Approach to Porous Polyoxometalateâ€Based Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2012, 51, 7985-7989.	13.8	165
93	Organic–inorganic hybrid complexes based on a Keggin-type polyoxoanion. Transition Metal Chemistry, 2012, 37, 445-451.	1.4	4
94	Controllable self-assembly of four new metal–organic frameworks based on different phosphomolybdate clusters by altering the molar ratio of H3PO4 and Na2MoO4. CrystEngComm, 2011, 13, 2479.	2.6	86
95	Controllable assembly of four new POM-based supramolecular compounds by altering the POM secondary building units from pseudo-Keggin to classical Keggin. CrystEngComm, 2011, 13, 2687.	2.6	37
96	Controllable self-assembly of two novel metal–organic frameworks based on different tetradentate in situ ligands. CrystEngComm, 2011, 13, 649-655.	2.6	46
97	Two New Extended Frameworks Constructed from the Sandwiching Polytungstoantimonate Clusters. Journal of Cluster Science, 2011, 22, 73-85.	3.3	11
98	Three organic–inorganic hybrid complexes based on the Wells–Dawson polyoxoanion. Transition Metal Chemistry, 2011, 36, 201-206.	1.4	4
99	Two New {P8W49} Wheel-shaped Tungstophosphates Decorated by Co(II), Ni(II) Ions. Journal of Cluster Science, 2010, 21, 679-689.	3.3	17
100	Two Chain Like B-Type-Anderson-Based Hybrids Synthesized in Choline Chloride/Urea Eutectic Mixture. Journal of Cluster Science, 2010, 21, 133-145.	3.3	22
101	A New Molybdophosphate Constructed From {Mo 2 V O4(H2O)6}2+ and 1-Hydroxyethylidenediphosphonate. Journal of Cluster Science, 2010, 21, 147-154.	3.3	11
102	[H2N(C2H4)2NH2]4 (H3O) [PMo2VMo6VIV4IVO40(VIVO)2] · H2O: A New Highly Reduced, Bicapped Pseudo-Keggin Vanadylpolymolybdophosphate. Chinese Journal of Chemistry, 2010, 20, 933-936.	4.9	0
103	Resolution of chiral polyoxoanion [P2Mo18O62]6â^ with histidine. CrystEngComm, 2010, 12, 2044.	2.6	36
104	Spontaneous resolution of a new diphosphonate-functionalized polyoxomolybdate. CrystEngComm, 2010, 12, 4017.	2.6	30
105	Syntheses, crystal structures and electrochemical properties of three organic-inorganic hybrid supramolecular compounds based on copper-complex fragments and different polyoxometalates. Transition Metal Chemistry, 2009, 34, 361-366.	1.4	3
106	Theoretical studies on redox properties, protonation sites, and electronic spectrum of a new type of polyoxometalate [Ti _{12} Nb _{6} O _{44} O _{10<O_{10 O O_{10 O}}	2.0	5
107	Protein-Sized Chiral Fe ₁₆₈ Cages with NbO-Type Topology. Journal of the American Chemical Society, 2009, 131, 14600-14601.	13.7	128
108	Two new polyoxometalate-based organic-inorganic hybrids: synthesis, crystal structure and characterization. Journal of Coordination Chemistry, 2009, 62, 1035-1050.	2.2	5

#	Article	IF	CITATIONS
109	Theoretical study of the electronic properties of peroxohexaniobate, [H ₃ Nb ₆ O ₁₃ (O ₂) ₆] ^{5â^'} , by DFT. Molecular Physics, 2009, 107, 1521-1526.	1.7	1
110	Second-Order Nonlinear Optical Properties of Transition-Metal-Trisubstituted Polyoxometalateâ^'Diphosphate Complexes: A Donorâ^'Conjugated Bridgeâ^'Acceptor Paradigm for Totally Inorganic Nonlinear Optical Materials. Journal of Physical Chemistry C, 2009, 113, 19672-19676.	3.1	61
111	Heteropolyacid-assisted fabrication of carbon nanostructures under ambient conditions. Chemical Communications, 2009, , 413-415.	4.1	20
112	Second-Order Nonlinear Optical Properties of Trisubstituted Keggin and Wellsâ-'Dawson Polyoxometalates: Density Functional Theory Investigation of the Inorganic Donor-Conjugated Bridgeâ-'Acceptor Structure. Inorganic Chemistry, 2009, 48, 8115-8119.	4.0	46
113	Theoretical study of the electronic and redox properties of different metal-substituted Lindqvist-type polyanions. Molecular Physics, 2009, 107, 53-58.	1.7	1
114	Synthesis, crystal structure and electrochemical behavior of tetranuclear transition metal clusters based on lacunary silicotung states: $[M4(H2O)2(SiW9O34)2]10\hat{a}^{2}$ (MÂ=ÂNi2+, Co2 +) and $[Fe4(\hat{l}_{4}-O)2(\hat{l}_{4}-OH)2(SiW10O37)2]14\hat{a}^{2}$. Transition Metal Chemistry, 2008, 33, 323-330.	1.4	16
115	Synthesis, crystal structure and magnetic properties of new Mn ^{III} –Cu ^{II} heterometallic aggregates based on multidentate Schiff-base ligands. Journal of Coordination Chemistry, 2008, 61, 3080-3091.	2.2	15
116	New trimeric polyoxotungstate aggregates based on [P2W12O48]14â^' building blocks. Chemical Communications, 2008, , 1650.	4.1	106
117	Reactions of trivacant lone-pair-containing tungstobismutate and electrochemical behaviors of its sandwich-type products. Journal of Coordination Chemistry, 2007, 60, 567-579.	2.2	10
118	Chiral Polyoxometalate-Induced Enantiomerically 3D Architectures:  A New Route for Synthesis of High-Dimensional Chiral Compounds. Journal of the American Chemical Society, 2007, 129, 10066-10067.	13.7	176
119	Density functional study of protonation sites of $\hat{l}\pm$ -Keggin isopolyanions. International Journal of Quantum Chemistry, 2006, 106, 1860-1864.	2.0	24
120	Electrochemical Behavior of Polyoxometalates [XW11MoO40]nâ^'(X=P, Si, Ge withn=3, 4) in Aqueous and DMF Solution. Chinese Journal of Chemistry, 2006, 24, 316-320.	4.9	4
121	An Unusual 3D Interdigitated Architecture Self-Assembled from Sidearm-Containing 2D Bilayer Motifs with a Cuboidal Framework. European Journal of Inorganic Chemistry, 2005, 2005, 3418-3421.	2.0	67
122	Entangled Coordination Networks with Inherent Features of Polycatenation, Polythreading, and Polyknotting. Angewandte Chemie - International Edition, 2005, 44, 5824-5827.	13.8	416
123	Hydrothermal synthesis, crystal structure and third-order non-linear optical property of a copper chloride cluster. Journal of Coordination Chemistry, 2005, 58, 1439-1448.	2.2	9
124	Controllable Fabrication of Carbon Nanotube and Nanobelt with a Polyoxometalate-Assisted Mild Hydrothermal Process. Journal of the American Chemical Society, 2005, 127, 6534-6535.	13.7	160
125	Novel Cadmium(II) Adipate Coordination Polymers with Structural Transformation via Oxalate Ligand: Syntheses, Structures and Fluorescence Properties. European Journal of Inorganic Chemistry, 2004, 2004, 4102-4107.	2.0	84
126	Hydrothermal Synthesis and Properties of Openâ€Framework Mixedâ€valence Iron Phosphates Fe ₂ ^{ll} Fe ^{ll} (PO ₄) ₃ with Threeâ€dimensional Structure. Chinese Journal of Chemistry, 2004, 22, 55-59.	4.9	2

#	Article	IF	CITATIONS
127	A Novel Three-Dimensional Metal-Organic Framework Constructed from Two-Dimensional Interpenetrating Layers Based on Trinuclear Cobalt Clusters: [Co3(btec)(C2O4)(H2O)2]n. European Journal of Inorganic Chemistry, 2003, 2003, 2567-2571.	2.0	80
128	A Bifunctional Electrocatalyst Containing Tris(2,2′-bipyridine) Ruthenium(II) and 12-Molybdophosphate Bulk-Modified Carbon Paste Electrode. Electroanalysis, 2003, 15, 1460-1464.	2.9	47
129	One-Step Water-Assisted Synthesis of High-Quality Carbon Nanotubes Directly from Graphite. Journal of the American Chemical Society, 2003, 125, 13652-13653.	13.7	132
130	A novel manganese(II) complex with phen ligands: hydrothermal synthesis, structure and magnetic properties of [Mn(phen)(H2O)4] SO4·2H2O. Journal of Coordination Chemistry, 2003, 56, 1329-1337.	2.2	1
131	Polyoxometalates with supporting phosphate ligand: synthesis and characterization of \hat{l} ±-[SiW11O39M(H2PO4)]nâ°. Dalton Transactions, 2003, , 3850-3855.	3.3	18
132	The first polyoxoalkoxovanadium germanate anion with a novel cage-like structure: solvothermal synthesis and characterization. Dalton Transactions, 2003, , 519-520.	3.3	40
133	Synthesis, Properties and Crystal Structure of A New 12-Molybdogermanic Salt of Lanthanum Coordinated to N -Methyl-2-Pyrrolidone. Journal of Coordination Chemistry, 2003, 56, 85-94.	2.2	8
134	Renewable PMo12-Based Inorganic-Organic Hybrid Material Bulk-Modified Carbon Paste Electrode: Preparation, Electrochemistry and Electrocatalysis. Electroanalysis, 2002, 14, 1116-1121.	2.9	110
135	Layerâ€byâ€layer Multilayer Films Selfâ€assembled from a Rareâ€earthâ€containing Polyâ€oxometalate Na ₉ [Eu(W ₅ O ₁₈) ₂] and Poly (allylamine) Tj ETQq1 1 0.7843	14.rgBT /C	vgrlock 10
136	Inorganicâ€Organic Hybrid 18â€Molybdodiphosphate Nanoparticles Bulkâ€modified Carbon Paste Electrode and Its Electrocatalysis. Chinese Journal of Chemistry, 2002, 20, 777-783.	4.9	6
137	Rational syntheses, characterization, crystal structure, and replacement reactions of coordinated water molecules of [As2W18M4(H2O)2O68]10â^' (Mâ€=â€Cd, Co, Cu, Fe, Mn, Ni or Zn) â€. Dalton Trans RSC, 2001, , 121-129.	ac ži Bns	103