Eugene B Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/465582/publications.pdf

Version: 2024-02-01

21215 17891 17,155 158 62 125 citations h-index g-index papers 171 171 171 24596 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Gut Microbiome and Inflammatory Bowel Diseases. Annual Review of Medicine, 2022, 73, 455-468.	5.0	57
2	A Multifunctional Neutralizing Antibodyâ€Conjugated Nanoparticle Inhibits and Inactivates SARSâ€CoVâ€2. Advanced Science, 2022, 9, e2103240.	5.6	16
3	Gut microbiota–driven brain Aβ amyloidosis in mice requires microglia. Journal of Experimental Medicine, 2022, 219, .	4.2	44
4	The regulatory role of <scp>N⁶</scp> â€methyladenosine modification in the interaction between host and microbes. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1725.	3.2	8
5	High-fat diet disrupts REG3γ and gut microbial rhythms promoting metabolic dysfunction. Cell Host and Microbe, 2022, 30, 809-823.e6.	5.1	26
6	Inflammatory Bowel Diseases (IBD) and the Microbiomeâ€"Searching the Crime Scene for Clues. Gastroenterology, 2021, 160, 524-537.	0.6	276
7	Metagenomic Alterations in Gut Microbiota Precede and Predict Onset of Colitis in the IL10 Gene-Deficient Murine Model. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 491-502.	2.3	7
8	Nanotraps for the containment and clearance of SARS-CoV-2. Matter, 2021, 4, 2059-2082.	5.0	38
9	Gnotobiotic Operations and Assembly for Development of Germ-Free Animal Model of Laser-Induced Choroidal Neovascularization. Translational Vision Science and Technology, 2021, 10, 14.	1.1	5
10	High-Fat Diet Alters the Retinal Transcriptome in the Absence of Gut Microbiota. Cells, 2021, 10, 2119.	1.8	11
11	Early-Life Microbial Restitution Reduces Colitis Risk Promoted by Antibiotic-Induced Gut Dysbiosis in Interleukin 10–/– Mice. Gastroenterology, 2021, 161, 940-952.e15.	0.6	20
12	Epithelial wound healing in inflammatory bowel diseases: the next therapeutic frontier. Translational Research, 2021, 236, 35-51.	2.2	19
13	The Gut Microbiome: Reaching the Promise Through Discovery— Advancing Knowledge and Discovery of the Gut Microbiome in the Age of Precision Medicine. Gastroenterology, 2021, 160, 479-482.	0.6	4
14	Gut microbiota as a transducer of dietary cues to regulate host circadian rhythms and metabolism. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 679-689.	8.2	70
15	Intersection of the Gut Microbiome and Circadian Rhythms in Metabolism. Trends in Endocrinology and Metabolism, 2020, 31, 25-36.	3.1	89
16	Western Diet Promotes Intestinal Colonization by Collagenolytic Microbes and Promotes Tumor Formation After Colorectal Surgery. Gastroenterology, 2020, 158, 958-970.e2.	0.6	53
17	TGR5 signaling mitigates parenteral nutrition-associated liver disease. American Journal of Physiology - Renal Physiology, 2020, 318, G322-G335.	1.6	15
18	Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. Journal of Experimental Medicine, 2020, 217, .	4.2	172

#	Article	IF	CITATIONS
19	Navigating the Human Gut Microbiome: Pathway to Success from Lessons Learned. Gastroenterology, 2020, 159, 2019-2024.	0.6	10
20	The microbiome: Composition and locations. Progress in Molecular Biology and Translational Science, 2020, 176, 1-42.	0.9	23
21	Synergistic depletion of gut microbial consortia, but not individual antibiotics, reduces amyloidosis in APPPS1-21 Alzheimer's transgenic mice. Scientific Reports, 2020, 10, 8183.	1.6	51
22	Microbiota composition modulates inflammation and neointimal hyperplasia after arterial angioplasty. Journal of Vascular Surgery, 2020, 71, 1378-1389.e3.	0.6	4
23	IBD Microbial Metabolome: The Good, Bad, and Unknown. Trends in Endocrinology and Metabolism, 2020, 31, 807-809.	3.1	8
24	Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes. ELife, 2020, 9, .	2.8	73
25	Small intestinal microbiota: the neglected stepchild needed for fat digestion and absorption. Gut Microbes, 2019, 10, 235-240.	4.3	34
26	Regional Diversity of the Gastrointestinal Microbiome. Cell Host and Microbe, 2019, 26, 314-324.	5.1	247
27	Responsible stewardship for communicating microbiome research to the press and public. Nature Medicine, 2019, 25, 872-874.	15.2	14
28	Intestinal epithelial HMGB1 inhibits bacterial infection via STAT3 regulation of autophagy. Autophagy, 2019, 15, 1935-1953.	4.3	63
29	Bile Diversion Improves Metabolic Phenotype Dependent on Farnesoid X Receptor (FXR). Obesity, 2019, 27, 803-812.	1.5	8
30	Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids. Cell Host and Microbe, 2018, 23, 458-469.e5.	5.1	399
31	Dietary antioxidant micronutrients alter mucosal inflammatory risk in a murine model of genetic and microbial susceptibility. Journal of Nutritional Biochemistry, 2018, 54, 95-104.	1.9	20
32	Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. Journal of Vascular Surgery, 2018, 68, 1552-1562.e7.	0.6	105
33	Distinct roles of intracellular heat shock protein 70 in maintaining gastrointestinal homeostasis. American Journal of Physiology - Renal Physiology, 2018, 314, G164-G178.	1.6	19
34	The role of the intestinal microbiota in the pathogenesis and treatment of inflammatory bowel diseases. Seminars in Colon and Rectal Surgery, 2018, 29, 21-27.	0.2	0
35	Role of intestinal Hsp70 in barrier maintenance: contribution of milk to the induction of Hsp70.2. Pediatric Surgery International, 2018, 34, 323-330.	0.6	1
36	Circadian Clock Regulation of Hepatic Lipid Metabolism by Modulation of m6A mRNA Methylation. Cell Reports, 2018, 25, 1816-1828.e4.	2.9	207

#	Article	IF	Citations
37	Microbiome characterization by high-throughput transfer RNA sequencing and modification analysis. Nature Communications, 2018, 9, 5353.	5.8	48
38	Microbiota control acute arterial inflammation and neointimal hyperplasia development after arterial injury. PLoS ONE, 2018, 13, e0208426.	1.1	14
39	The intestinal microbiota in the pathogenesis of inflammatory bowel diseases: new insights into complex disease. Clinical Science, 2018, 132, 2013-2028.	1.8	51
40	Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature, 2018, 557, 580-584.	13.7	296
41	Microbial Physiology of the Digestive Tract and Its Role in Inflammatory Bowel Diseases. , 2018, , 795-810.		9
42	Time-, Sex-, and Dose-Dependent Alterations of the Gut Microbiota by Consumption of Dietary Daikenchuto (TU-100). Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-18.	0.5	18
43	Minimizing confounders and increasing data quality in murine models for studies of the gut microbiome. PeerJ, 2018, 6, e5166.	0.9	48
44	Gâ€proteinâ€Coupled Bile Acid Receptor Attenuates Liver Injury in a Murine Model of Acute Parenteral Nutrition. FASEB Journal, 2018, 32, 759.6.	0.2	0
45	The gut microbiota and inflammatory bowel diseases. Translational Research, 2017, 179, 38-48.	2.2	124
46	Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases. Molecular Nutrition and Food Research, 2017, 61, 1600129.	1.5	110
47	Western diets, gut dysbiosis, and metabolic diseases: Are they linked?. Gut Microbes, 2017, 8, 130-142.	4.3	177
48	Early Transcriptomic Changes in the Ileal Pouch Provide Insight into the Molecular Pathogenesis of Pouchitis and Ulcerative Colitis. Inflammatory Bowel Diseases, 2017, 23, 1.	0.9	16
49	A new role for microbiota? Dulling the thrust of serotonin and 5-HT ₃ signaling cascade. American Journal of Physiology - Renal Physiology, 2017, 313, G14-G15.	1.6	3
50	Microbial metabolites in health and disease: Navigating the unknown in search of function. Journal of Biological Chemistry, 2017, 292, 8553-8559.	1.6	103
51	Mutual reinforcement of pathophysiological hostâ€microbe interactions in intestinal stasis models. Physiological Reports, 2017, 5, e13182.	0.7	55
52	Michael addition-based probes for ratiometric fluorescence imaging of protein S-depalmitoylases in live cells and tissues. Chemical Science, 2017, 8, 7588-7592.	3.7	31
53	Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer's disease. Scientific Reports, 2017, 7, 10411.	1.6	206
54	Report of the National Heart, Lung, and Blood Institute Working Group on the Role of Microbiota in Blood Pressure Regulation. Hypertension, 2017, 70, 479-485.	1.3	53

#	Article	IF	CITATIONS
55	The Human Microbiome and Obesity: Moving beyond Associations. Cell Host and Microbe, 2017, 22, 589-599.	5.1	366
56	Peripartum Antibiotics Promote Gut Dysbiosis, Loss of Immune Tolerance, and Inflammatory Bowel Disease in Genetically Prone Offspring. Cell Reports, 2017, 20, 491-504.	2.9	109
57	Oxalobacter formigenes–Derived Bioactive Factors Stimulate Oxalate Transport by Intestinal Epithelial Cells. Journal of the American Society of Nephrology: JASN, 2017, 28, 876-887.	3.0	70
58	Significant difference in active metabolite levels of ginseng in humans consuming Asian or Western diet: The link with enteric microbiota. Biomedical Chromatography, 2017, 31, e3851.	0.8	25
59	Daikenchuto (TUâ€100) Suppresses Tumor Development in the Azoxymethane and APC ^{min/+} Mouse Models of Experimental Colon Cancer. Phytotherapy Research, 2017, 31, 90-99.	2.8	10
60	Daikenchuto (TUâ€100) alters murine hepatic and intestinal drug metabolizing enzymes in an inÂvivo dietary model: effects of gender and withdrawal. Pharmacology Research and Perspectives, 2017, 5, e00361.	1.1	5
61	Fructose diet alleviates acetaminophen-induced hepatotoxicity in mice. PLoS ONE, 2017, 12, e0182977.	1.1	12
62	Transplanting a Microbial Organ: the Good, the Bad, and the Unknown. MBio, 2016, 7, .	1.8	13
63	Activation of bile acid signaling improves metabolic phenotypes in high-fat diet-induced obese mice. American Journal of Physiology - Renal Physiology, 2016, 311, G286-G304.	1.6	59
64	Daikenchuto (TUâ€100) shapes gut microbiota architecture and increases the production of ginsenoside metabolite compound K. Pharmacology Research and Perspectives, 2016, 4, e00215.	1.1	34
65	Patient-Specific <i>Bacteroides</i> Genome Variants in Pouchitis. MBio, 2016, 7, .	1.8	38
66	Antibiotics Suppress Activation of Intestinal Mucosal Mast Cells and Reduce Dietary Lipid Absorption in Sprague-Dawley Rats. Gastroenterology, 2016, 151, 923-932.	0.6	62
67	Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice. Scientific Reports, 2016, 6, 35405.	1.6	316
68	The Gut Microbiota. Gastroenterology Clinics of North America, 2016, 45, 601-614.	1.0	34
69	Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development. Scientific Reports, 2016, 6, 32094.	1.6	28
70	Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease. Scientific Reports, 2016, 6, 30028.	1.6	469
71	Soluble bioactive microbial mediators regulate proteasomal degradation and autophagy to protect against inflammation-induced stress. American Journal of Physiology - Renal Physiology, 2016, 311, G634-G647.	1.6	3
72	Insights into the pathogenesis of ulcerative colitis from a murine model of stasis-induced dysbiosis, colonic metaplasia, and genetic susceptibility. American Journal of Physiology - Renal Physiology, 2016, 310, G973-G988.	1.6	22

#	Article	IF	Citations
73	A polyphenol-rich fraction obtained from table grapes decreases adiposity, insulin resistance and markers of inflammation and impacts gut microbiota in high-fat-fed mice. Journal of Nutritional Biochemistry, 2016, 31, 150-165.	1.9	87
74	Genetic and Metabolic Signals during Acute Enteric Bacterial Infection Alter the Microbiota and Drive Progression to Chronic Inflammatory Disease. Cell Host and Microbe, 2016, 19, 21-31.	5.1	81
75	Determination of American ginseng saponins and their metabolites in human plasma, urine and feces samples by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1015-1016, 62-73.	1.2	34
76	Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice. Journal of Nutritional Biochemistry, 2016, 27, 123-135.	1.9	80
77	Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice. ISME Journal, 2016, 10, 1217-1227.	4.4	85
78	Navigating the Microbial Basis of Inflammatory Bowel Diseases: Seeing the Light at the End of the Tunnel. Gut and Liver, 2016, 10, 502-508.	1.4	14
79	Vancomycin treatment and butyrate supplementation modulate gut microbe composition and severity of neointimal hyperplasia after arterial injury. Physiological Reports, 2015, 3, e12627.	0.7	22
80	Transcriptional Modulation of Intestinal Innate Defense/Inflammation Genes by Preterm Infant Microbiota in a Humanized Gnotobiotic Mouse Model. PLoS ONE, 2015, 10, e0124504.	1.1	30
81	Butyrate inhibits pro-proliferative miR-92a by diminishing c-Myc-induced miR-17-92a cluster transcription in human colon cancer cells. Molecular Cancer, 2015, 14, 180.	7.9	135
82	IBD and the Gut Microbiotaâ€"from Bench to Personalized Medicine. Current Gastroenterology Reports, 2015, 17, 15.	1.1	54
83	Effects of Diurnal Variation of Gut Microbes and High-Fat Feeding on Host Circadian Clock Function and Metabolism. Cell Host and Microbe, 2015, 17, 681-689.	5.1	634
84	Commensal <i>Bifidobacterium</i> promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science, 2015, 350, 1084-1089.	6.0	2,782
85	Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut, 2015, 64, 1082-1094.	6.1	279
86	Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation. Journal of Clinical Investigation, 2015, 125, 1098-1110.	3.9	173
87	Towards Anatomic Scale Agent-Based Modeling with a Massively Parallel Spatially Explicit General-Purpose Model of Enteric Tissue (SEGMEnT_HPC). PLoS ONE, 2015, 10, e0122192.	1.1	20
88	Intracellular HMGB1: defender of client proteins and cell fate. Oncotarget, 2015, 6, 8432-8433.	0.8	4
89	Exercise Prevents Weight Gain and Alters the Gut Microbiota in a Mouse Model of High Fat Diet-Induced Obesity. PLoS ONE, 2014, 9, e92193.	1.1	451
90	Intracellular Hmgb1 Inhibits Inflammatory Nucleosome Release and Limits Acute Pancreatitis in Mice. Gastroenterology, 2014, 146, 1097-1107.e8.	0.6	200

#	Article	IF	Citations
91	Hepatocyte-specific high-mobility group box 1 deletion worsens the injury in liver ischemia/reperfusion: A role for intracellular high-mobility group box 1 in cellular protection. Hepatology, 2014, 59, 1984-1997.	3.6	123
92	Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project's Most Wanted taxa. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9768-9773.	3.3	126
93	Exploring gut microbes in human health and disease: Pushing the envelope. Genes and Diseases, 2014, 1, 132-139.	1.5	144
94	Diet, gut microbes, and genetics in immune function: can we leverage our current knowledge to achieve better outcomes in inflammatory bowel diseases?. Current Opinion in Immunology, 2014, 31, 16-23.	2.4	29
95	TU-100 (Daikenchuto) and Ginger Ameliorate Anti-CD3 Antibody Induced T Cell-Mediated Murine Enteritis: Microbe-Independent Effects Involving Akt and NF-κB Suppression. PLoS ONE, 2014, 9, e97456.	1.1	19
96	Diet, microbes, and host genetics: the perfect storm in inflammatory bowel diseases. Journal of Gastroenterology, 2013, 48, 315-321.	2.3	128
97	A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community. Microbiome, 2013, $1,8$.	4.9	129
98	Composition of Dietary Fat Source Shapes Gut Microbiota Architecture and Alters Host Inflammatory Mediators in Mouse Adipose Tissue. Journal of Parenteral and Enteral Nutrition, 2013, 37, 746-754.	1.3	119
99	The role of diet in triggering human inflammatory disorders in the modern age. Microbes and Infection, 2013, 15, 765-774.	1.0	35
100	Lubiprostone Decreases Mouse Colonic Inner Mucus Layer Thickness and Alters Intestinal Microbiota. Digestive Diseases and Sciences, 2013, 58, 668-677.	1.1	42
101	Compound K, a Ginsenoside Metabolite, Inhibits Colon Cancer Growth via Multiple Pathways Including p53-p21 Interactions. International Journal of Molecular Sciences, 2013, 14, 2980-2995.	1.8	76
102	Diet-induced expansion of pathobionts in experimental colitis. Gut Microbes, 2013, 4, 172-174.	4.3	14
103	Antibioticâ€Induced Gut Microbiota Alters Periodâ€2 Circadian Gene Expression in Liver. FASEB Journal, 2013, 27, 1205.2.	0.2	0
104	Pharmacologicallyâ€Induced Alterations in Gastrointestinal Motility Affects Regional Colonic Microbial Assemblage. FASEB Journal, 2013, 27, 1164.3.	0.2	0
105	Functional predictions from inference and observation in sequence-based inflammatory bowel disease research. Genome Biology, 2012, 13, 169.	3.8	11
106	Ginsenoside compound K, not Rb1, possesses potential chemopreventive activities in human colorectal cancer. International Journal of Oncology, 2012, 40, 1970-6.	1.4	61
107	Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il $10\hat{a}^3$ / \hat{a}^3 mice. Nature, 2012, 487, 104-108.	13.7	1,506
108	Functional predictions from inference and observation in sequence-based inflammatory bowel disease research. Genome Biology, 2012, 13, 169.	13.9	14

#	Article	IF	Citations
109	Standard Colonic Lavage Alters the Natural State of Mucosal-Associated Microbiota in the Human Colon. PLoS ONE, 2012, 7, e32545.	1.1	127
110	The Colitis-Associated Transcriptional Profile of Commensal Bacteroides thetaiotaomicron Enhances Adaptive Immune Responses to a Bacterial Antigen. PLoS ONE, 2012, 7, e42645.	1.1	36
111	Dietary conjugated linoleic acid reshapes high fat dietâ€induced microbiota and reduces its immunogenicity. FASEB Journal, 2012, 26, 830.7.	0.2	0
112	Studying the Enteric Microbiome in Inflammatory Bowel Diseases: Getting through the Growing Pains and Moving Forward. Frontiers in Microbiology, 2011, 2, 144.	1.5	20
113	American ginseng suppresses Western diet-promoted tumorigenesis in model of inflammation-associated colon cancer: role of EGFR. BMC Complementary and Alternative Medicine, 2011, 11, 111.	3.7	42
114	Cytokine regulation of OCTN2 expression and activity in small and large intestine. Inflammatory Bowel Diseases, 2011, 17, 907-916.	0.9	26
115	The Microbe-Derived Short Chain Fatty Acid Butyrate Targets miRNA-Dependent p21 Gene Expression in Human Colon Cancer. PLoS ONE, 2011, 6, e16221.	1.1	174
116	Regional differences in colonic mucosa-associated microbiota determine the physiological expression of host heat shock proteins. American Journal of Physiology - Renal Physiology, 2010, 299, G1266-G1275.	1.6	38
117	Laser capture microdissection and metagenomic analysis of intact mucosa-associated microbial communities of human colon. Applied Microbiology and Biotechnology, 2010, 88, 1333-1342.	1.7	42
118	Regional Mucosa-Associated Microbiota Determine Physiological Expression of TLR2 and TLR4 in Murine Colon. PLoS ONE, 2010, 5, e13607.	1.1	110
119	Diets high in saturated fat increase intestinal inflammation associated with IBD via alterations in the microbiota. FASEB Journal, 2010, 24, 342.8.	0.2	0
120	Inflammation-induced, 3′UTR-dependent translational inhibition of Hsp70 mRNA impairs intestinal homeostasis. American Journal of Physiology - Renal Physiology, 2009, 296, G1003-G1011.	1.6	26
121	Bacteria-free solution derived from lactobacillus plantarum inhibits multiple NF-kappaB pathways and inhibits proteasome function. Inflammatory Bowel Diseases, 2009, 15, 1537-1547.	0.9	77
122	16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME Journal, 2009, 3, 944-954.	4.4	508
123	Do heat shock proteins play any role in gut inflammation?. Inflammatory Bowel Diseases, 2008, 14, \$102-\$103.	0.9	10
124	Do heat shock proteins play any role in gut inflammation?. Inflammatory Bowel Diseases, 2008, 14, S102-S103.	0.9	4
125	The Bacillus subtilis Quorum-Sensing Molecule CSF Contributes to Intestinal Homeostasis via OCTN2, a Host Cell Membrane Transporter. Cell Host and Microbe, 2007, 1, 299-308.	5.1	218
126	Translational Inhibition of Colonic Epithelial Heat Shock Proteins by IFN-Î ³ and TNF-α in Intestinal Inflammation. Gastroenterology, 2007, 133, 1893-1904.	0.6	85

#	Article	IF	CITATIONS
127	Tumor necrosis factor- \hat{l}_{\pm} and interferon- \hat{l}_{3} increase PepT1 expression and activity in the human colon carcinoma cell line Caco-2/bbe and in mouse intestine. Pflugers Archiv European Journal of Physiology, 2006, 452, 71-80.	1.3	41
128	Soluble factors fromLactobacillus GGactivate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells. American Journal of Physiology - Cell Physiology, 2006, 290, C1018-C1030.	2.1	258
129	Crosstalk between NF-κB and β-catenin pathways in bacterial-colonized intestinal epithelial cells. American Journal of Physiology - Renal Physiology, 2005, 289, G129-G137.	1.6	116
130	Luminal bacterial flora determines physiological expression of intestinal epithelial cytoprotective heat shock proteins 25 and 72. American Journal of Physiology - Renal Physiology, 2005, 288, G696-G704.	1.6	104
131	Role and regulation of intestinal epithelial heat shock proteins in health and disease. Chinese Journal of Digestive Diseases, 2004, 5, 45-50.	1.1	54
132	hPepT1 transports muramyl dipeptide, activating NF-κB and stimulating IL-8 secretion in human colonic Caco2/bbe cells. Gastroenterology, 2004, 127, 1401-1409.	0.6	223
133	Probiotics inhibit nuclear factor-l̂ºB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition. Gastroenterology, 2004, 127, 1474-1487.	0.6	307
134	Heat shock protein 72 binds and protects dihydrofolate reductase against oxidative injury. Biochemical and Biophysical Research Communications, 2004, 313, 185-192.	1.0	21
135	Luminal bacterial flora determine physiological expression of intestinal epithelial cytoprotective heat shock protein 25 and 72 expression. Gastroenterology, 2003, 124, A484.	0.6	3
136	Enteric flora and lymphocyte-derived cytokines determine expression of heat shock proteins in mouse colonic epithelial cells. Gastroenterology, 2003, 124, 1395-1407.	0.6	99
137	Interleukin-11-induced heat shock protein 25 confers intestinal epithelial-specific cytoprotection from oxidant stress. Gastroenterology, 2003, 124, 1358-1368.	0.6	88
138	Protective role of HSP72 against <i>Clostridium difficile</i> toxin A-induced intestinal epithelial cell dysfunction. American Journal of Physiology - Cell Physiology, 2003, 284, C1073-C1082.	2.1	65
139	T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+-ATPase. Journal of Clinical Investigation, 2002, 110, 1739-1747.	3.9	134
140	T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+-ATPase. Journal of Clinical Investigation, 2002, 110, 1739-1747.	3.9	87
141	Oxidants potentiate Ca2+- and cAMP-stimulated Clâ^' secretion in intestinal epithelial T84 cells. Gastroenterology, 2001, 120, 89-98.	0.6	21
142	Inhibition of Na+,K+-ATPase by interferon \hat{I}^3 down-regulates intestinal epithelial transport and barrier function. Gastroenterology, 2001, 120, 1393-1403.	0.6	146
143	Short-chain fatty acids induce intestinal epithelial heat shock protein 25 expression in rats and IEC 18 cells. Gastroenterology, 2001, 121, 631-639.	0.6	101
144	IFN-Î ³ downregulates expression of Na ⁺ /H ⁺ exchangers NHE2 and NHE3 in rat intestine and human Caco-2/bbe cells. American Journal of Physiology - Cell Physiology, 2001, 280, C1224-C1232.	2.1	117

#	Article	IF	CITATIONS
145	GLUTAMINE REDUCES CYTOKINE RELEASE, ORGAN DAMAGE, AND MORTALITY IN A RAT MODEL OF ENDOTOXEMIA. Shock, 2001, 16, 398-402.	1.0	143
146	Expression of multiple Na ⁺ /H ⁺ exchanger isoforms in rat parotid acinar and ductal cells. American Journal of Physiology - Renal Physiology, 1999, 276, G470-G478.	1.6	40
147	Heat-shock protein 72 protects against oxidant-induced injury of barrier function of human colonic epithelial Caco2/bbe cells. Gastroenterology, 1999, 117, 115-122.	0.6	89
148	Membrane-limited expression and regulation of Na+-H+exchanger isoforms by P2receptors in the rat submandibular gland duct. Journal of Physiology, 1998, 513, 341-357.	1,3	68
149	Regulation of apical membrane Na+/H+exchangers NHE2 and NHE3 in intestinal epithelial cell line C2/bbe. American Journal of Physiology - Cell Physiology, 1998, 275, C693-C701.	2.1	50
150	Mechanisms and Treatment of Diarrhea in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 1997, 3, 114-131.	0.9	12
151	Tissue distribution of Na ⁺ /H ⁺ exchanger isoforms NHE2 and NHE4 in rat intestine and kidney. American Journal of Physiology - Cell Physiology, 1997, 273, C1496-C1505.	2.1	80
152	Mechanisms and treatment of diarrhea in inflammatory bowel diseases. Inflammatory Bowel Diseases, 1997, 3, 114-131.	0.9	13
153	Phorbol dibutyrate-specific protein phosphorylation in brush border membranes of chicken enterocytes. Journal of Cellular Physiology, 1994, 159, 347-355.	2.0	3
154	Expression and phosphorylation of NHE1 in wild-type and transformed human and rodent fibroblasts. Journal of Cellular Physiology, 1994, 161, 351-357.	2.0	16
155	Epithelial Secretory Response to Inflammation. Annals of the New York Academy of Sciences, 1992, 664, 210-221.	1.8	37
156	Regional alterations in intestinal sucrase expression in streptozocin-treated chronically diabetic rats. Digestive Diseases and Sciences, 1992, 37, 1078-1083.	1,1	3
157	Bethanechol inhibition of chicken intestinal brush border Na/H exchange: Role of protein kinase C and other calcium-dependent processes. Journal of Cellular Physiology, 1992, 152, 362-371.	2.0	13
158	The Pharmacological Modification of Secretory Responses. Novartis Foundation Symposium, 1985, 112, 155-174.	1.2	2