Omar El Bounagui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4655628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic properties and large magnetocaloric effect in the perovskite Mn ₃ GeC compound: Ab initio and Monte Carlo calculations. Phase Transitions, 2022, 95, 10-18.	0.6	2
2	Ab initio study of structural and optical properties of the halide perovskite KBX3 compound. Journal of the Korean Ceramic Society, 2022, 59, 350-358.	1.1	29
3	Strain effect on physical properties of the multiferroic Mn ₃ Sn material: a first-principles calculations. Philosophical Magazine, 2022, 102, 1305-1319.	0.7	1
4	Magnetic, magnetocaloric and thermoelectric properties of the intermetallic LaMn ₂ Si ₂ compound: a theoretical study. Phase Transitions, 2022, 95, 387-397.	0.6	2
5	Theoretical investigations of electronic structure and optical properties of S, Se or Te doped perovskite ATiO3 (A=Ca, Ba, and Sr) materials for eco-friendly solar cells. Superlattices and Microstructures, 2022, 163, 107124.	1.4	6
6	The effect of chalcogens-doped with dilation strain on the electronic, optic, and thermoelectric properties of perovskite BaSnO3 compound. Journal of the Korean Ceramic Society, 2022, 59, 715-728.	1.1	7
7	Earth-abundant nontoxic ternary calcium nitrides inverse perovskites for single-junction solar cells: Ab-initio simulations. Materials Science in Semiconductor Processing, 2022, 150, 106959.	1.9	6
8	Energy level engineering of charge selective contact and halide perovskite by modulating band offset: Mechanistic insights. Journal of Energy Chemistry, 2021, 54, 822-829.	7.1	60
9	Unravelling the theoretical window to fabricate high performance inorganic perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 219-229.	2.5	19
10	Theoretical investigation of physical properties of the spinel ZnFe ₂ O ₄ compound: Ab-initio calculation. Phase Transitions, 2021, 94, 134-146.	0.6	2
11	A DFT study of the electronic structure, optical, and thermoelectric properties of halide perovskite KGel3-xBrx materials: photovoltaic applications. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	39
12	Theoretical investigation of electronic, magnetic and magnetocaloric properties of Bi ₂₅ FeO ₄₀ compound. Phase Transitions, 2021, 94, 147-158.	0.6	11
13	Magnetocaloric and thermoelectric properties of the perovskite LaMnO ₃ material: A DFT study and Monte Carlo technique. Phase Transitions, 2021, 94, 826-834.	0.6	15
14	Harnessing the potential of lead-free Sn–Ge based perovskite solar cells by unlocking the recombination channels. Sustainable Energy and Fuels, 2021, 5, 4661-4667.	2.5	34
15	Interfacial modification of perovskite solar cells via Cs2CO3: Computational and experimental approach. Solar Energy, 2021, 228, 700-705.	2.9	4
16	Magnetic Properties of NiFe2O4 Compound: Ab Initio Calculation and Monte Carlo Simulation. Journal of Superconductivity and Novel Magnetism, 2020, 33, 1369-1375.	0.8	14
17	Theoretical investigation of electronic and optical properties of the CuIn1-x GaxSe2: Ab initio calculation. Optik, 2020, 207, 163881.	1.4	4
18	Electronic, optical and transport properties of perovskite BaZrS3 compound doped with Se for photovoltaic applications. Chemical Physics, 2020, 538, 110923.	0.9	21

Omar El Bounagui

#	Article	IF	CITATIONS
19	How the strain effects decreases the band gap energy in the CsPbX ₃ perovskite compounds?. Phase Transitions, 2020, 93, 455-469.	0.6	15
20	Electronic, transport and optical properties in perovskite compound LaGaO ₃ . Materials Research Express, 2020, 7, 035501.	0.8	3
21	Magnetocaloric effect in metallic antiperovskite Mn3InC compound: Ab-initio study and Monte Carlo simulations. Solid State Communications, 2020, 309, 113841.	0.9	10
22	Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study. Solar Energy, 2019, 193, 948-955.	2.9	218
23	Structural, electronic, magnetic, and magnetocaloric properties in intermetallic compound TbCu2Si2. Journal of Magnetism and Magnetic Materials, 2019, 481, 72-76.	1.0	10
24	Electronic Stopping Powers of Formvar and Mylar Polymeric Materials for Heavy Ions: LSS Modified Theory and Monte Carlo Simulation. Nuclear Technology, 2019, 205, 1236-1244.	0.7	0
25	Appraisement of Crystal Expansion in CH ₃ NH ₃ PbI ₃ on Doping: Improved Photovoltaic Properties. ChemSusChem, 2019, 12, 2366-2372.	3.6	6
26	Magnetic, magnetocaloric and transport properties in AlCMn3 antiperovskite compound. Journal of Alloys and Compounds, 2018, 741, 1196-1202.	2.8	16
27	RF plasma-enhanced graphene–polymer composites as hole transport materials for perovskite solar cells. Polymer Bulletin, 2018, 75, 4531-4545.	1.7	11
28	Structural, electronic, magnetic, and magnetocaloric properties in metallic antiperovskite compound Mn3GaC. Materials Research Bulletin, 2018, 98, 335-339.	2.7	20
29	Ab Initio Study of Electronic and Magnetic Properties in ZnO-Doped and Co-doped by Vanadium and Silver. Journal of Superconductivity and Novel Magnetism, 2018, 31, 2201-2206.	0.8	1
30	Understanding the Influence of Interface Morphology on the Performance of Perovskite Solar Cells. Materials, 2018, 11, 1073.	1.3	19
31	Vacuum deposited perovskite solar cells employing dopant-free triazatruxene as the hole transport material. Solar Energy Materials and Solar Cells, 2017, 163, 237-241.	3.0	54
32	1-dimensional TiO2 nano-forests as photoanodes for efficient and stable perovskite solar cells fabrication. Nano Energy, 2017, 35, 215-222.	8.2	34
33	Ab Initio Study of Electronic and Magnetic Properties of Ga1-x Co x N (Doped) and Ga1-x-y Co x Cr y N (Co-doped). Journal of Superconductivity and Novel Magnetism, 2017, 30, 165-170.	0.8	5
34	Holeâ€Transport Materials for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 14522-14545.	7.2	786
35	Electronic and Magnetic Properties of ZnO Doped and Co-doped with (Co, Cr). Journal of Superconductivity and Novel Magnetism, 2016, 29, 3167-3173.	0.8	3
36	Lochtransportmaterialien für Perowskitâ€ S olarzellen. Angewandte Chemie, 2016, 128, 14740-14764.	1.6	72

OMAR EL BOUNAGUI

#	Article	IF	CITATIONS
37	Performance and stability of mixed FAPbI3(0.85)MAPbBr3(0.15) halide perovskite solar cells under outdoor conditions and the effect of low light irradiation. Nano Energy, 2016, 30, 570-579.	8.2	110
38	Perovskite as Light Harvester: A Game Changer in Photovoltaics. Angewandte Chemie - International Edition, 2014, 53, 2812-2824.	7.2	862
39	CHANNELING ENERGY LOSS IN SILICON BY USING NUMERICAL AND EXPERIMENTAL METHODS. Modern Physics Letters B, 2011, 25, 2171-2181.	1.0	2
40	Monte Carlo calculation of energy loss of hydrogen and helium ions transmitted under channelling conditions in silicon single crystal. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 1361-1366.	0.6	2