## Erich Grotewold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4655574/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010, 15, 573-581.                                                                                                                                          | 8.8  | 2,987     |
| 2  | Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010, 463, 763-768.                                                                                                                         | 27.8 | 1,685     |
| 3  | THE GENETICS AND BIOCHEMISTRY OF FLORAL PIGMENTS. Annual Review of Plant Biology, 2006, 57, 761-780.                                                                                                                           | 18.7 | 1,233     |
| 4  | Root Exudation and Rhizosphere Biology. Plant Physiology, 2003, 132, 44-51.                                                                                                                                                    | 4.8  | 1,216     |
| 5  | Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant Journal, 2011, 66, 94-116.                                                                                                            | 5.7  | 1,014     |
| 6  | How genes paint flowers and seeds. Trends in Plant Science, 1998, 3, 212-217.                                                                                                                                                  | 8.8  | 804       |
| 7  | The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell, 1994, 76, 543-553.                                                       | 28.9 | 644       |
| 8  | Flavonoids as developmental regulators. Current Opinion in Plant Biology, 2005, 8, 317-323.                                                                                                                                    | 7.1  | 514       |
| 9  | AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics, 2003, 4, 25.                                              | 2.6  | 349       |
| 10 | Engineering Secondary Metabolism in Maize Cells by Ectopic Expression of Transcription Factors.<br>Plant Cell, 1998, 10, 721-740.                                                                                              | 6.6  | 343       |
| 11 | The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development (Cambridge), 2008, 135, 1991-1999.                                                               | 2.5  | 311       |
| 12 | Apigenin Blocks Lipopolysaccharide-Induced Lethality In Vivo and Proinflammatory Cytokines<br>Expression by Inactivating NF-κB through the Suppression of p65 Phosphorylation. Journal of<br>Immunology, 2007, 179, 7121-7127. | 0.8  | 301       |
| 13 | Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13579-13584.    | 7.1  | 292       |
| 14 | AGRIS: the Arabidopsis Gene Regulatory Information Server, an update. Nucleic Acids Research, 2011, 39, D1118-D1122.                                                                                                           | 14.5 | 289       |
| 15 | GRASSIUS: A Platform for Comparative Regulatory Genomics across the Grasses  Â. Plant Physiology, 2009, 149, 171-180.                                                                                                          | 4.8  | 260       |
| 16 | Unraveling the KNOTTED1 regulatory network in maize meristems. Genes and Development, 2012, 26, 1685-1690.                                                                                                                     | 5.9  | 258       |
| 17 | AGRIS and AtRegNet. A Platform to Link cis-Regulatory Elements and Transcription Factors into Regulatory Networks. Plant Physiology, 2006, 140, 818-829.                                                                       | 4.8  | 249       |
| 18 | ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant lournal, 2010, 64, 633-644.                                                                                              | 5.7  | 245       |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Brachypodium as a Model for the Grasses: Today and the Future Â. Plant Physiology, 2011, 157, 3-13.                                                                                                                                   | 4.8 | 243       |
| 20 | Flavones: From Biosynthesis to Health Benefits. Plants, 2016, 5, 27.                                                                                                                                                                  | 3.5 | 209       |
| 21 | A Trafficking Pathway for Anthocyanins Overlaps with the Endoplasmic Reticulum-to-Vacuole<br>Protein-Sorting Route in Arabidopsis and Contributes to the Formation of Vacuolar Inclusions. Plant<br>Physiology, 2007, 145, 1323-1335. | 4.8 | 189       |
| 22 | 50Âyears of Arabidopsis research: highlights and future directions. New Phytologist, 2016, 209, 921-944.                                                                                                                              | 7.3 | 186       |
| 23 | A Systems Approach Reveals Regulatory Circuitry for Arabidopsis Trichome Initiation by the GL3 and GL1 Selectors. PLoS Genetics, 2009, 5, e1000396.                                                                                   | 3.5 | 185       |
| 24 | Participation of the Arabidopsis bHLH Factor GL3 in Trichome Initiation Regulatory Events. Plant<br>Physiology, 2007, 145, 736-746.                                                                                                   | 4.8 | 181       |
| 25 | Genome wide analysis of Arabidopsis core promoters. BMC Genomics, 2005, 6, 25.                                                                                                                                                        | 2.8 | 180       |
| 26 | WIND1 Promotes Shoot Regeneration through Transcriptional Activation of <i>ENHANCER OF SHOOT REGENERATION1</i> in Arabidopsis. Plant Cell, 2017, 29, 54-69.                                                                           | 6.6 | 164       |
| 27 | Regulatory modules controlling maize inflorescence architecture. Genome Research, 2014, 24, 431-443.                                                                                                                                  | 5.5 | 160       |
| 28 | Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism. Plant Cell, 2015, 27, 2545-2559.                                                                                                                                  | 6.6 | 153       |
| 29 | Regulation of Cell Proliferation in the Stomatal Lineage by the <i>Arabidopsis</i> MYB FOUR LIPS via<br>Direct Targeting of Core Cell Cycle Genes. Plant Cell, 2010, 22, 2306-2321.                                                   | 6.6 | 152       |
| 30 | Recently Duplicated Maize R2R3 Myb Genes Provide Evidence for Distinct Mechanisms of Evolutionary<br>Divergence after Duplication. Plant Physiology, 2003, 131, 610-620.                                                              | 4.8 | 151       |
| 31 | Maize R2R3 Myb Genes: Sequence Analysis Reveals Amplification in the Higher Plants. Genetics, 1999, 153, 427-444.                                                                                                                     | 2.9 | 150       |
| 32 | A Genome-Wide Regulatory Framework Identifies Maize <i>Pericarp Color1</i> Controlled Genes. Plant<br>Cell, 2012, 24, 2745-2764.                                                                                                      | 6.6 | 148       |
| 33 | Transcription factors for predictive plant metabolic engineering: are we there yet?. Current Opinion in Biotechnology, 2008, 19, 138-144.                                                                                             | 6.6 | 146       |
| 34 | Plant metabolic diversity: a regulatory perspective. Trends in Plant Science, 2005, 10, 57-62.                                                                                                                                        | 8.8 | 144       |
| 35 | Apigenin-induced-apoptosis is mediated by the activation of PKCδ and caspases in leukemia cells.<br>Biochemical Pharmacology, 2006, 72, 681-692.                                                                                      | 4.4 | 144       |
| 36 | The Formation of Anthocyanic Vacuolar Inclusions in Arabidopsis thaliana and Implications for the Sequestration of Anthocyanin Pigments. Molecular Plant, 2010, 3, 78-90.                                                             | 8.3 | 134       |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Inhibition of AtMYB2 DNA-binding by nitric oxide involves cysteine S-nitrosylation. Biochemical and Biophysical Research Communications, 2007, 361, 1048-1053.                                                                             | 2.1 | 133       |
| 38 | Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis. Planta, 2014, 240, 931-940.                                                                                                                       | 3.2 | 129       |
| 39 | Cloning and characterization of a UV-B-inducible maize flavonol synthase. Plant Journal, 2010, 62, 77-91.                                                                                                                                  | 5.7 | 126       |
| 40 | Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. Plant Cell, 2022, 34, 718-741.                                                                                                                     | 6.6 | 125       |
| 41 | An ACT-like Domain Participates in the Dimerization of Several Plant Basic-helix-loop-helix<br>Transcription Factors. Journal of Biological Chemistry, 2006, 281, 28964-28974.                                                             | 3.4 | 124       |
| 42 | Different Mechanisms Participate in the R-dependent Activity of the R2R3 MYB Transcription Factor C1.<br>Journal of Biological Chemistry, 2004, 279, 48205-48213.                                                                          | 3.4 | 123       |
| 43 | Identification of a Bifunctional Maize C- and O-Glucosyltransferase. Journal of Biological Chemistry, 2013, 288, 31678-31688.                                                                                                              | 3.4 | 122       |
| 44 | Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signaling and Behavior, 2015, 10, e1027850.                                                                                                          | 2.4 | 118       |
| 45 | Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2153-62.        | 7.1 | 115       |
| 46 | Developmental regulation of CYCA2s contributes to tissue-specific proliferation in <i>Arabidopsis</i> .<br>EMBO Journal, 2011, 30, 3430-3441.                                                                                              | 7.8 | 113       |
| 47 | Role of the stomatal development regulators FLP/MYB88 in abiotic stress responses. Plant Journal, 2010, 64, 731-739.                                                                                                                       | 5.7 | 104       |
| 48 | A MYB/ZML Complex Regulates Wound-Induced Lignin Genes in Maize. Plant Cell, 2015, 27, 3245-3259.                                                                                                                                          | 6.6 | 104       |
| 49 | The challenges of moving chemicals within and out of cells: insights into the transport of plant natural products. Planta, 2004, 219, 906-9.                                                                                               | 3.2 | 96        |
| 50 | Functional Conservation of Plant Secondary Metabolic Enzymes Revealed by Complementation of<br>Arabidopsis Flavonoid Mutants with Maize Genes. Plant Physiology, 2001, 127, 46-57.                                                         | 4.8 | 93        |
| 51 | Two Cysteines in Plant R2R3 MYB Domains Participate in REDOX-dependent DNA Binding. Journal of<br>Biological Chemistry, 2004, 279, 37878-37885.                                                                                            | 3.4 | 92        |
| 52 | Regulatory switch enforced by basic helix-loop-helix and ACT-domain mediated dimerizations of the<br>maize transcription factor R. Proceedings of the National Academy of Sciences of the United States of<br>America, 2012, 109, E2091-7. | 7.1 | 92        |
| 53 | Differences between Plant and Animal Myb Domains Are Fundamental for DNA Binding Activity, and<br>Chimeric Myb Domains Have Novel DNA Binding Specificities. Journal of Biological Chemistry, 1997, 272,<br>563-571.                       | 3.4 | 87        |
| 54 | The Identification of Maize and Arabidopsis Type I FLAVONE SYNTHASEs Links Flavones with Hormones and Biotic Interactions. Plant Physiology, 2015, 169, 1090-1107.                                                                         | 4.8 | 87        |

| #  | Article                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The basic helix–loop–helix domain of maize R links transcriptional regulation and histone<br>modifications by recruitment of an EMSY-related factor. Proceedings of the National Academy of<br>Sciences of the United States of America, 2007, 104, 17222-17227.                    | 7.1  | 82        |
| 56 | MYB31/MYB42 Syntelogs Exhibit Divergent Regulation of Phenylpropanoid Genes in Maize, Sorghum and Rice. Scientific Reports, 2016, 6, 28502.                                                                                                                                         | 3.3  | 81        |
| 57 | Newly Discovered Plant c-myb-Like Genes Rewrite the Evolution of the Plant myb Gene Family : Fig. 1<br>Plant Physiology, 1999, 121, 21-24.                                                                                                                                          | 4.8  | 79        |
| 58 | Grass phenylpropanoids: Regulate before using!. Plant Science, 2012, 184, 112-120.                                                                                                                                                                                                  | 3.6  | 79        |
| 59 | Helix–loop–helix/basic helix–loop–helix transcription factor network represses cell elongation in<br><i>Arabidopsis</i> through an apparent incoherent feed-forward loop. Proceedings of the National<br>Academy of Sciences of the United States of America, 2014, 111, 2824-2829. | 7.1  | 76        |
| 60 | A chemical complementation approach reveals genes and interactions of flavonoids with other pathways. Plant Journal, 2013, 74, 383-397.                                                                                                                                             | 5.7  | 74        |
| 61 | Flavonols Protect Arabidopsis Plants against UV-B Deleterious Effects. Molecular Plant, 2013, 6,<br>1376-1379.                                                                                                                                                                      | 8.3  | 74        |
| 62 | Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism.<br>Nature Communications, 2015, 6, 8822.                                                                                                                                       | 12.8 | 74        |
| 63 | A Maize Gene Regulatory Network for Phenolic Metabolism. Molecular Plant, 2017, 10, 498-515.                                                                                                                                                                                        | 8.3  | 74        |
| 64 | Isolation and characterization of a maize gene encoding chalcone flavonone isomerase. Molecular<br>Genetics and Genomics, 1994, 242, 1-8.                                                                                                                                           | 2.4  | 70        |
| 65 | A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications, 2015, 6, 8821.                                                                                                            | 12.8 | 70        |
| 66 | Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte<br>Infiltration and Restoring Normal Metabolic Function. International Journal of Molecular Sciences,<br>2016, 17, 323.                                                    | 4.1  | 69        |
| 67 | Standardized Method for High-throughput Sterilization of Arabidopsis Seeds. Journal of Visualized Experiments, 2017, , .                                                                                                                                                            | 0.3  | 69        |
| 68 | Expression of flavonoid 3'-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid<br>biosynthesis in maize. BMC Plant Biology, 2012, 12, 196.                                                                                                                           | 3.6  | 65        |
| 69 | Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites. Plant Cell, 2015, 27, 3309-3320.                                                                                                                  | 6.6  | 65        |
| 70 | Metabolic engineering to enhance the value of plants as green factories. Metabolic Engineering, 2015, 27, 83-91.                                                                                                                                                                    | 7.0  | 65        |
| 71 | Identification and Characterization of Maize <i>salmon silks</i> Genes Involved in Insecticidal Maysin<br>Biosynthesis. Plant Cell, 2016, 28, 1297-1309.                                                                                                                            | 6.6  | 64        |
| 72 | Source verification of misâ€identified <i>Arabidopsis thaliana</i> accessions. Plant Journal, 2011, 67, 554-566.                                                                                                                                                                    | 5.7  | 63        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Tomato floral induction and flower development are orchestrated by the interplay between<br>gibberellin and two unrelated micro <scp>RNA</scp> â€controlled modules. New Phytologist, 2019, 221,<br>1328-1344.          | 7.3 | 61        |
| 74 | Transcriptional repression of the APC/C activator CCS52A1 promotes active termination of cell growth. EMBO Journal, 2012, 31, 4488-4501.                                                                                | 7.8 | 60        |
| 75 | Meta Gene Regulatory Networks in Maize Highlight Functionally Relevant Regulatory Interactions.<br>Plant Cell, 2020, 32, 1377-1396.                                                                                     | 6.6 | 60        |
| 76 | Light-induced morphological alteration in anthocyanin-accumulating vacuoles of maize cells. BMC<br>Plant Biology, 2005, 5, 7.                                                                                           | 3.6 | 58        |
| 77 | Interplay of MYB factors in differential cell expansion, and consequences for tomato fruit development. Plant Journal, 2011, 68, 337-350.                                                                               | 5.7 | 55        |
| 78 | The Maize <scp>TF</scp> ome – development of a transcription factor open reading frame collection for functional genomics. Plant Journal, 2014, 80, 356-366.                                                            | 5.7 | 55        |
| 79 | Flavone-rich maize: an opportunity to improve the nutritional value of an important commodity crop.<br>Frontiers in Plant Science, 2014, 5, 440.                                                                        | 3.6 | 54        |
| 80 | Apigenin produced by maize flavone synthase <scp>I</scp> and <scp>II</scp> protects plants against<br><scp>UVâ€B</scp> â€induced damage. Plant, Cell and Environment, 2019, 42, 495-508.                                | 5.7 | 54        |
| 81 | Handling Arabidopsis Plants: Growth, Preservation of Seeds, Transformation, and Genetic Crosses.<br>Methods in Molecular Biology, 2014, 1062, 3-25.                                                                     | 0.9 | 54        |
| 82 | Topological and statistical analyses of gene regulatory networks reveal unifying yet quantitatively<br>different emergent properties. PLoS Computational Biology, 2018, 14, e1006098.                                   | 3.2 | 48        |
| 83 | Apigenin induces DNA damage through the PKCÎʿ-dependent activation of ATM and H2AX causing<br>down-regulation of genes involved in cell cycle control and DNA repair. Biochemical Pharmacology,<br>2012, 84, 1571-1580. | 4.4 | 46        |
| 84 | A Recommendation for Naming Transcription Factor Proteins in the Grasses. Plant Physiology, 2009, 149, 4-6.                                                                                                             | 4.8 | 45        |
| 85 | Combinatorial control of plant gene expression. Biochimica Et Biophysica Acta - Gene Regulatory<br>Mechanisms, 2017, 1860, 31-40.                                                                                       | 1.9 | 44        |
| 86 | Transposon Insertions in the Promoter of the <i>Zea mays a1</i> Gene Differentially Affect<br>Transcription by the Myb Factors P and C1. Genetics, 2002, 161, 793-801.                                                  | 2.9 | 43        |
| 87 | Emergence of Switch-Like Behavior in a Large Family of Simple Biochemical Networks. PLoS<br>Computational Biology, 2011, 7, e1002039.                                                                                   | 3.2 | 41        |
| 88 | From plant gene regulatory grids to network dynamics. Biochimica Et Biophysica Acta - Gene<br>Regulatory Mechanisms, 2012, 1819, 454-465.                                                                               | 1.9 | 41        |
| 89 | Rhamnose in plants - from biosynthesis to diverse functions. Plant Science, 2021, 302, 110687.                                                                                                                          | 3.6 | 41        |
| 90 | The tomato early fruit specific gene Lefsm1 defines a novel class of plant-specific SANT/MYB domain proteins. Planta, 2005, 221, 197-211.                                                                               | 3.2 | 40        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | SELEX (Systematic Evolution of Ligands by EXponential Enrichment), as a Powerful Tool for<br>Deciphering the Protein–DNA Interaction Space. Methods in Molecular Biology, 2011, 754, 249-258.         | 0.9 | 38        |
| 92  | Evolution and Expression of Tandem Duplicated Maize Flavonol Synthase Genes. Frontiers in Plant<br>Science, 2012, 3, 101.                                                                             | 3.6 | 36        |
| 93  | Sub-cellular trafficking of phytochemicals explored using auto-fluorescent compounds in maize cells. BMC Plant Biology, 2003, 3, 10.                                                                  | 3.6 | 35        |
| 94  | Challenges and opportunities for improving food quality and nutrition through plant biotechnology.<br>Current Opinion in Biotechnology, 2017, 44, 124-129.                                            | 6.6 | 34        |
| 95  | Challenges of Translating Gene Regulatory Information into Agronomic Improvements. Trends in Plant Science, 2019, 24, 1075-1082.                                                                      | 8.8 | 34        |
| 96  | A possible hot spot for Ac insertion in the maize P gene. Molecular Genetics and Genomics, 1991, 230, 329-331.                                                                                        | 2.4 | 33        |
| 97  | Trafficking and Sequestration of Anthocyanins. Natural Product Communications, 2008, 3, 1934578X0800300.                                                                                              | 0.5 | 33        |
| 98  | The capacity for multistability in small gene regulatory networks. BMC Systems Biology, 2009, 3, 96.                                                                                                  | 3.0 | 33        |
| 99  | Evidence for Direct Activation of an Anthocyanin Promoter by the Maize C1 Protein and Comparison of DNA Binding by Related Myb Domain Proteins. Plant Cell, 1997, 9, 611.                             | 6.6 | 32        |
| 100 | Beyond the wall: High-throughput quantification of plant soluble and cell-wall bound phenolics by<br>liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 2019, 1589, 93-104. | 3.7 | 32        |
| 101 | Essential Dynamics from NMR Clusters: Dynamic Properties of the Myb DNA-Binding Domain and a<br>Hinge-Bending Enhancing Variant. Methods, 1998, 14, 318-328.                                          | 3.8 | 30        |
| 102 | Manipulating the accumulation of phenolics in maize cultured cells using transcription factors.<br>Biochemical Engineering Journal, 2003, 14, 207-216.                                                | 3.6 | 30        |
| 103 | Prediction of conserved and variable heat and cold stress response in maize using cis-regulatory information. Plant Cell, 2022, 34, 514-534.                                                          | 6.6 | 30        |
| 104 | Chapter three Regulation of anthocyanin pigmentation. Recent Advances in Phytochemistry, 2003, 37, 59-78.                                                                                             | 0.5 | 29        |
| 105 | The word landscape of the non-coding segments of the Arabidopsis thaliana genome. BMC Genomics, 2009, 10, 463.                                                                                        | 2.8 | 28        |
| 106 | Fungal Zuotin Proteins Evolved from MIDA1-like Factors by Lineage-Specific Loss of MYB Domains.<br>Molecular Biology and Evolution, 2001, 18, 1401-1412.                                              | 8.9 | 26        |
| 107 | Comparison of ESTs from juvenile and adult phases of the giant unicellular green alga Acetabularia acetabulum. BMC Plant Biology, 2004, 4, 3.                                                         | 3.6 | 25        |
| 108 | Plant specialized metabolism. Plant Science, 2020, 298, 110579.                                                                                                                                       | 3.6 | 25        |

| #   | Article                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Gene-Specific and Genome-Wide ChIP Approaches to Study Plant Transcriptional Networks. Methods in<br>Molecular Biology, 2009, 553, 3-12.                                            | 0.9  | 25        |
| 110 | Ubiquitln expression inNeurospora crassa: cloning and sequencing of a polyubiquitin gene. Nucleic<br>Acids Research, 1989, 17, 6153-6165.                                           | 14.5 | 24        |
| 111 | Modeling temporal and hormonal regulation of plant transcriptional response to wounding. Plant<br>Cell, 2022, 34, 867-888.                                                          | 6.6  | 22        |
| 112 | Characterization of Anthocyanidin Synthase (ANS) Gene and anthocyanidin in rare medicinal plant-Saussurea medusa. Plant Cell, Tissue and Organ Culture, 2007, 89, 63-73.            | 2.3  | 20        |
| 113 | POPcorn: An Online Resource Providing Access to Distributed and Diverse Maize Project Data.<br>International Journal of Plant Genomics, 2011, 2011, 1-10.                           | 2.2  | 20        |
| 114 | Identification of biochemical features of defective Coffea arabica L. beans. Food Research<br>International, 2017, 95, 59-67.                                                       | 6.2  | 20        |
| 115 | Using fluorescence lifetime microscopy to study the subcellular localization of anthocyanins. Plant<br>Journal, 2016, 88, 895-903.                                                  | 5.7  | 19        |
| 116 | Arabidopsis JMJD5/JMJ30 Acts Independently of LUX ARRHYTHMO Within the Plant Circadian Clock to Enable Temperature Compensation. Frontiers in Plant Science, 2019, 10, 57.          | 3.6  | 19        |
| 117 | Highâ€resolution computational imaging of leaf hair patterning using polarized light microscopy. Plant<br>Journal, 2013, 73, 701-708.                                               | 5.7  | 17        |
| 118 | Synergy between the anthocyanin and RDR6/SGS3/DCL4 siRNA pathways expose hidden features of Arabidopsis carbon metabolism. Nature Communications, 2020, 11, 2456.                   | 12.8 | 17        |
| 119 | Expression and Molecular Characterization of ZmMYB-IF35 and Related R2R3-MYB Transcription Factors. Molecular Biotechnology, 2007, 37, 155-164.                                     | 2.4  | 16        |
| 120 | Components and Mechanisms of Regulation of Gene Expression. Methods in Molecular Biology, 2010, 674, 23-32.                                                                         | 0.9  | 15        |
| 121 | Chapter Five Transcription factors and metabolic engineering: Novel applications for ancient tools.<br>Recent Advances in Phytochemistry, 2001, 35, 79-109.                         | 0.5  | 14        |
| 122 | Cloning and characterization of a flavanone 3-hydroxylase gene fromSaussurea medusa. DNA<br>Sequence, 2005, 16, 121-129.                                                            | 0.7  | 14        |
| 123 | Serial ChIP as a tool to investigate the co-localization or exclusion of proteins on plant genes. Plant<br>Methods, 2008, 4, 25.                                                    | 4.3  | 14        |
| 124 | Analysis of the P1promoter in response to UV-B radiation in allelic variants of high-altitude maize.<br>BMC Plant Biology, 2012, 12, 92.                                            | 3.6  | 14        |
| 125 | RNase P as a tool for disruption of gene expression in maize cells. Biochemical Journal, 2004, 380, 611-616.                                                                        | 3.7  | 13        |
| 126 | Exploring <i>Camelina sativa</i> lipid metabolism regulation by combining gene coâ€expression and <scp>DNA</scp> affinity purification analyses. Plant Journal, 2022, 110, 589-606. | 5.7  | 13        |

| #   | Article                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | The BIF Domain in Plant bHLH Proteins Is an ACT-Like Domain. Plant Cell, 2017, 29, 1800-1802.                                                                                              | 6.6  | 12        |
| 128 | The cDNA sequence and expression of an ubiquitin-tail gene fusion in Neurospora crassa. Gene, 1991, 102, 133-137.                                                                          | 2.2  | 11        |
| 129 | Engineering Secondary Metabolism in Maize Cells by Ectopic Expression of Transcription Factors.<br>Plant Cell, 1998, 10, 721.                                                              | 6.6  | 11        |
| 130 | The Next Generation of Training for Arabidopsis Researchers: Bioinformatics and Quantitative<br>Biology. Plant Physiology, 2017, 175, 1499-1509.                                           | 4.8  | 11        |
| 131 | Discovery of modules involved in the biosynthesis and regulation of maize phenolic compounds. Plant Science, 2020, 291, 110364.                                                            | 3.6  | 11        |
| 132 | Microautophagy Mediates Vacuolar Delivery of Storage Proteins in Maize Aleurone Cells. Frontiers in<br>Plant Science, 2022, 13, 833612.                                                    | 3.6  | 11        |
| 133 | Arabidopsis EMSY-like (EML) histone readers are necessary for post-fertilization seed development, but prevent fertilization-independent seed formation. Plant Science, 2019, 285, 99-109. | 3.6  | 10        |
| 134 | Diversity of genetic lesions characterizes new Arabidopsis flavonoid pigment mutant alleles from<br>T-DNA collections. Plant Science, 2020, 291, 110335.                                   | 3.6  | 10        |
| 135 | Arabidopsis Database and Stock Resources. Methods in Molecular Biology, 2014, 1062, 65-96.                                                                                                 | 0.9  | 10        |
| 136 | Flavonols drive plant microevolution. Nature Genetics, 2016, 48, 112-113.                                                                                                                  | 21.4 | 9         |
| 137 | A hydrophobic residue stabilizes dimers of regulatory ACT-like domains in plant basic<br>helix–loop–helix transcription factors. Journal of Biological Chemistry, 2021, 296, 100708.       | 3.4  | 9         |
| 138 | Differential gene expression promoted by cycloheximide inNeurospora crassa. Experimental Mycology, 1987, 11, 122-127.                                                                      | 1.6  | 8         |
| 139 | Establishing the Architecture of Plant Gene Regulatory Networks. Methods in Enzymology, 2016, 576, 251-304.                                                                                | 1.0  | 8         |
| 140 | News from the plant world: Listening to transcription. Biochimica Et Biophysica Acta - Gene<br>Regulatory Mechanisms, 2017, 1860, 1-2.                                                     | 1.9  | 8         |
| 141 | Arabidopsis MATE 45 antagonizes local abscisic acid signaling to mediate development and abiotic stress responses. Plant Direct, 2018, 2, e00087.                                          | 1.9  | 8         |
| 142 | CamRegBase: a gene regulation database for the biofuel crop, <i>Camelina sativa</i> . Database: the<br>Journal of Biological Databases and Curation, 2020, 2020, .                         | 3.0  | 7         |
| 143 | The challenges faced by living stock collections in the USA. ELife, 2017, 6, .                                                                                                             | 6.0  | 7         |
|     |                                                                                                                                                                                            |      |           |

144 Metabolite Profiling as a Functional Genomics Tool. , 2003, 236, 415-426.

6

| #   | Article                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Covalent attachment of the plant natural product naringenin to small glass and ceramic beads. BMC<br>Chemical Biology, 2005, 5, 3.                                     | 1.6 | 6         |
| 146 | Following Phenotypes: An Exploration of Mendelian Genetics Using Arabidopsis Plants. American<br>Biology Teacher, 2018, 80, 291-300.                                   | 0.2 | 6         |
| 147 | Participation of Phytochemicals in Plant Development and Growth. , 2009, , 269-279.                                                                                    |     | 6         |
| 148 | Important biological information uncovered in previously unaligned reads from chromatin immunoprecipitation experiments (ChIP-Seq). Scientific Reports, 2015, 5, 8635. | 3.3 | 5         |
| 149 | Natural variation and improved genome annotation of the emerging biofuel crop field pennycress<br>( <i>Thlaspi arvense</i> ). G3: Genes, Genomes, Genetics, 2022, , .  | 1.8 | 5         |
| 150 | Plant biotechnology – Predictive, green and quantitative. Current Opinion in Biotechnology, 2008, 19,<br>129-130.                                                      | 6.6 | 4         |
| 151 | Turning over a new leaf in plant genomics. Genome Biology, 2013, 14, 403.                                                                                              | 8.8 | 4         |
| 152 | The Plant Genome: Decoding the Transcriptional Hardwiring. , 0, , 196-228.                                                                                             |     | 4         |
| 153 | A novel reverse-genetic approach (SIMF) identifies Mutator insertions in new Myb genes. Planta, 2000,<br>211, 887-893.                                                 | 3.2 | 3         |
| 154 | Imaging Vacuolar Anthocyanins with Fluorescence Lifetime Microscopy (FLIM). Methods in Molecular<br>Biology, 2018, 1789, 131-141.                                      | 0.9 | 3         |
| 155 | Maize Transcription Factors. , 2009, , 693-713.                                                                                                                        |     | 3         |
| 156 | Protocol for the Generation of a Transcription Factor Open Reading Frame Collection (TFome).<br>Bio-protocol, 2015, 5, .                                               | 0.4 | 3         |
| 157 | Design of Knowledge Bases for Plant Gene Regulatory Networks. Methods in Molecular Biology, 2017,<br>1629, 207-223.                                                    | 0.9 | 1         |
| 158 | Genome-Wide TSS Identification in Maize. Methods in Molecular Biology, 2018, 1830, 239-256.                                                                            | 0.9 | 1         |
| 159 | Encyclopedias of DNA Elements for Plant Genomes. Science, Engineering, and Biology Informatics, 2011, , 159-178.                                                       | 0.1 | 1         |
| 160 | Transcription Factors, Gene Regulatory Networks and Agronomic Traits. Advances in Agroecology, 2011, , 65-94.                                                          | 0.3 | 1         |
| 161 | Normalizing and Correcting Variable and Complex LC–MS Metabolomic Data with the R Package pseudoDrift. Metabolites, 2022, 12, 435                                      | 2.9 | 1         |
| 162 | Construction of Genomic Regulatory Encyclopedias: Strategies and Case Studies. , 2009, , .                                                                             |     | 0         |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Discovery of Regulatory Networks in Plants by Linking Promoter and Transcription Factor Databases. , 2009, , .                                                                     |     | 0         |
| 164 | Identification of Humanâ€Flavonoid Targets Using an Innovative Approach Reveals New Mechanisms<br>Involved in Their Antiâ€Inflammatory Activities. FASEB Journal, 2012, 26, 251.5. | 0.5 | 0         |