Barbara Bonelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4653744/publications.pdf

Version: 2024-02-01

134610 175968 4,188 150 34 55 citations h-index g-index papers 152 152 152 5650 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Brookite, a sometimes under evaluated TiO ₂ polymorph. RSC Advances, 2022, 12, 3322-3334.	1.7	19
2	The role of metallic and acid sites of Ru-Nb-Si catalysts in the transformation of levulinic acid to \hat{I}^3 -valerolactone. Applied Catalysis B: Environmental, 2022, 310, 121340.	10.8	11
3	Composite Cu-SSZ-13 and CeO2-SnO2 for enhanced NH3-SCR resistance towards hydrocarbon deactivation. Applied Catalysis B: Environmental, 2021, 282, 119536.	10.8	25
4	Imogolite: a nanotubular aluminosilicate: synthesis, derivatives, analogues, and general and biological applications. Materials Chemistry Frontiers, 2021, 5, 6779-6802.	3.2	12
5	Effective Inclusion of Sizable Amounts of Mo within TiO ₂ Nanoparticles Can Be Obtained by Reverse Micelle Sol–Gel Synthesis. ACS Omega, 2021, 6, 5379-5388.	1.6	16
6	Transition Metal B-Site Substitutions in LaAlO3 Perovskites Reorient Bio-Ethanol Conversion Reactions. Catalysts, 2021, 11, 344.	1.6	9
7	Suitability of Nanoparticles to Face Benzo(a)pyrene-Induced Genetic and Chromosomal Damage in M. galloprovincialis. An In Vitro Approach. Nanomaterials, 2021, 11, 1309.	1.9	4
8	New Insights in the Production of Simulated Moon Agglutinates: the Use of Natural Zeolite-Bearing Rocks. ACS Earth and Space Chemistry, 2021, 5, 1631-1646.	1.2	6
9	Visible Light-Driven Photocatalytic Activity and Kinetics of Fe-Doped TiO2 Prepared by a Three-Block Copolymer Templating Approach. Materials, 2021, 14, 3105.	1.3	17
10	Reverse Micelle Strategy for the Synthesis of MnO _{<i>x</i>} â€"TiO ₂ Active Catalysts for NH ₃ -Selective Catalytic Reduction of NO _{<i>x</i>} at Both Low Temperature and Low Mn Content. ACS Omega, 2021, 6, 24562-24574.	1.6	12
11	Co-doped LaAlO3 perovskite oxide for NOx-assisted soot oxidation. Applied Catalysis A: General, 2020, 589, 117304.	2.2	21
12	Effect of the preparation technique of Cu-ZSM-5 catalysts on the isothermal oscillatory behavior of nitrous oxide decomposition. Catalysis Today, 2020, 345, 59-70.	2.2	8
13	Magnetic behavior of Ni nanoparticles and Ni2+ ions in weakly loaded zeolitic structures. Journal of Alloys and Compounds, 2020, 817, 152776.	2.8	10
14	Unraveling the effect of ZrO ₂ modifiers on the nature of active sites on AuRu/ZrO ₂ catalysts for furfural hydrogenation. Sustainable Energy and Fuels, 2020, 4, 1469-1480.	2.5	10
15	Actual mineralization versus partial degradation of wastewater contaminants. , 2020, , 331-350.		2
16	Common wastewater contaminants versus emerging ones. , 2020, , 19-46.		4
17	Effects of the Brookite Phase on the Properties of Different Nanostructured TiO ₂ Phases Photocatalytically Active Towards the Degradation of Nâ€Phenylurea. ChemistryOpen, 2020, 9, 903-912.	0.9	11
18	Structure and Stability of Gas Adsorption Complexes in Periodic Porous Solids as Studied by VTIR Spectroscopy: An Overview. Applied Sciences (Switzerland), 2020, 10, 8589.	1.3	4

#	Article	lF	CITATIONS
19	Molar Entropy and Enthalpy of CO Adsorbed in Zeolites as Derived from VTIR Data: Role of Intermolecular Modes. ChemistryOpen, 2020, 9, 599-606.	0.9	1
20	SO ₂ deactivation mechanism of NO oxidation and regeneration of the LaCoO ₃ perovskite. Catalysis Science and Technology, 2020, 10, 2193-2202.	2.1	16
21	Hybrid organic-inorganic nanotubes effectively adsorb some organic pollutants in aqueous phase. Applied Clay Science, 2020, 186, 105449.	2.6	14
22	Microwave-Assisted Protocol for Green Functionalization of Thiophenes With a Pd/\hat{l}^2 -Cyclodextrin Cross-Linked Nanocatalyst. Frontiers in Chemistry, 2020, 8, 253.	1.8	12
23	Separation of Biological Entities from Human Blood by Using Magnetic Nanocomposites Obtained from Zeolite Precursors. Molecules, 2020, 25, 1803.	1.7	10
24	Simultaneous improvement of ammonia mediated NOx SCR and soot oxidation for enhanced SCR-on-Filter application. Applied Catalysis A: General, 2020, 596, 117538.	2.2	19
25	Removal of Agrochemicals from Waters by Adsorption: A Critical Comparison among Humic-Like Substances, Zeolites, Porous Oxides, and Magnetic Nanocomposites. Processes, 2020, 8, 141.	1.3	14
26	Photocatalysts for Organics Degradation. Catalysts, 2019, 9, 870.	1.6	0
27	Near UVâ€Irradiation of CuO _x â€Impregnated TiO ₂ Providing Active Species for H ₂ Production Through Methanol Photoreforming. ChemCatChem, 2019, 11, 4314-4326.	1.8	25
28	Simulated Moon Agglutinates Obtained from Zeolite Precursor by Means of a Low-Cost and Scalable Synthesis Method. ACS Earth and Space Chemistry, 2019, 3, 1884-1895.	1.2	9
29	Self-Activating Catalyst for Glucose Hydrogenation in the Aqueous Phase under Mild Conditions. ACS Catalysis, 2019, 9, 3426-3436.	5.5	31
30	Electrochemical Measurements as Screening Method for Water Oxidation Catalyst. PoliTO Springer Series, 2019, , 75-91.	0.3	0
31	Sacrificial Oxidants as a Means to Study the Catalytic Activity of Water Oxidation Catalysts. PoliTO Springer Series, 2019, , 29-47.	0.3	0
32	Use of the Bubbling Reactor with the ${\text{mathbf}}_{\text{u(bpy)}}_{\text{mathbf}}^{2}}^{\text{mathbf}}_{2+}$ {mathbf ${0}_{\text{mathbf}}^{2}}^{\text{mathbf}}_{2-}}$ {mathbf ${2}_{2-}$ }\$\$ Photosystem for Measuring the Rate of Water Oxidation as Promoted by Different Manganese Oxides. PoliTO Springer Series, 2019, , 49-74.	0.3	0
33	Testing Novel Water Oxidation Catalysts for Solar Fuels Production. PoliTO Springer Series, 2019, , .	0.3	3
34	Application of Reverse Micelle Sol–Gel Synthesis for Bulk Doping and Heteroatoms Surface Enrichment in Mo-Doped TiO2 Nanoparticles. Materials, 2019, 12, 937.	1.3	21
35	Magnetic Properties of Nanocomposites. Applied Sciences (Switzerland), 2019, 9, 212.	1.3	62
36	Magnetic metal-ceramic nanocomposites obtained from cation-exchanged zeolite by heat treatment in reducing atmosphere. Microporous and Mesoporous Materials, 2018, 268, 131-143.	2.2	24

3

#	Article	IF	CITATIONS
37	New Insights into the Role of the Synthesis Procedure on the Performance of Co-Based Catalysts for Ethanol Steam Reforming. Topics in Catalysis, 2018, 61, 1734-1745.	1.3	15
38	Photo-activated degradation of tartrazine by H 2 O 2 as catalyzed by both bare and Fe-doped methyl-imogolite nanotubes. Catalysis Today, 2018, 304, 199-207.	2.2	38
39	Photoreduction of nitrates from waste and drinking water. Materials Today: Proceedings, 2018, 5, 17404-17413.	0.9	11
40	Non-Linear Enthalpy-Entropy Correlation for Nitrogen Adsorption in Zeolites. Molecules, 2018, 23, 2978.	1.7	3
41	Nanomaterials for the Abatement of Pharmaceuticals and Personal Care Products from Wastewater. Applied Sciences (Switzerland), 2018, 8, 170.	1.3	46
42	Beneficial effect of Fe addition on the catalytic activity of electrodeposited MnOx films in the water oxidation reaction. Electrochimica Acta, 2018, 284, 294-302.	2.6	13
43	Microwave, Ultrasound, and Mechanochemistry: Unconventional Tools that Are Used to Obtain "Smart―Catalysts for CO2 Hydrogenation. Catalysts, 2018, 8, 262.	1.6	11
44	A Sol–Gel Ruthenium–Niobium–Silicon Mixedâ€Oxide Bifunctional Catalyst for the Hydrogenation of Levulinic Acid in the Aqueous Phase. ChemCatChem, 2017, 9, 1476-1486.	1.8	19
45	Pure and Fe-doped CeO2 nanoparticles obtained by microwave assisted combustion synthesis: Physico-chemical properties ruling their catalytic activity towards CO oxidation and soot combustion. Applied Catalysis B: Environmental, 2017, 211, 31-45.	10.8	73
46	Preparation and Characterization of Magnetic and Porous Metal-Ceramic Nanocomposites from a Zeolite Precursor and Their Application for DNA Separation. Journal of Biomedical Nanotechnology, 2017, 13, 337-348.	0.5	24
47	A simple model for a complex system: Kinetics of water oxidation with the [Ru(bpy) 3] $2+$ /S 2 O 8 $2\hat{a}$ photosystem as catalyzed by Mn 2 O 3 under different illumination conditions. Chemical Engineering Journal, 2017, 311, 143-152.	6.6	13
48	Photocatalytic Processes for the Abatement of N-Containing Pollutants from Waste Water. Part 1: Inorganic Pollutants. Journal of Nanoscience and Nanotechnology, 2017, 17, 3632-3653.	0.9	23
49	Probing Gas Adsorption in Zeolites by Variable-Temperature IR Spectroscopy: An Overview of Current Research. Molecules, 2017, 22, 1557.	1.7	9
50	Pure and Fe-Doped Mesoporous Titania Catalyse the Oxidation of Acid Orange 7 by H2O2 under Different Illumination Conditions: Fe Doping Improves Photocatalytic Activity under Simulated Solar Light. Catalysts, 2017, 7, 213.	1.6	24
51	Role of pH in the Aqueous Phase Reactivity of Zerovalent Iron Nanoparticles with Acid Orange 7, a Model Molecule of Azo Dyes. Journal of Nanomaterials, 2017, 2017, 1-13.	1.5	11
52	Catalytic and Photocatalytic Processes for the Abatement of N-Containing Pollutants from Wastewater. Part 2: Organic Pollutants. Journal of Nanoscience and Nanotechnology, 2017, 17, 3654-3672.	0.9	23
53	Spin-Coated vs. Electrodeposited Mn Oxide Films as Water Oxidation Catalysts. Materials, 2016, 9, 296.	1.3	31
54	Mixed 1Tâ€"2H Phase MoS ₂ /Reduced Graphene Oxide as Active Electrode for Enhanced Supercapacitive Performance. ACS Applied Materials & Supercapacitive Performance Perfor	4.0	132

#	Article	IF	Citations
55	Synthesis and Characterization of Fe-doped Aluminosilicate Nanotubes with Enhanced Electron Conductive Properties. Journal of Visualized Experiments, 2016 , , .	0.2	1
56	Reactivity of bare and Fe-doped alumino-silicate nanotubes (imogolite) with H2O2 and the azo-dye Acid Orange 7. Catalysis Today, 2016, 277, 89-96.	2.2	24
57	Catalytic degradation of Acid Orange 7 by H2O2as promoted by either bare or V-loaded titania under UV light, in dark conditions, and after incubating the catalysts in ascorbic acid. Journal of Lithic Studies, 2015, 1, 183-191.	0.1	8
58	The role of outer surface/inner bulk $Br\tilde{A}_{,n}$ nsted acidic sites in the adsorption of a large basic molecule (simazine) on H-Y zeolite. Physical Chemistry Chemical Physics, 2015, 17, 28950-28957.	1.3	10
59	Effect of surface area on the rate of photocatalytic water oxidation as promoted by different manganese oxides. Chemical Engineering Journal, 2015, 278, 36-45.	6.6	15
60	Nanoparticles of CoAPO-5: synthesis and comparison with microcrystalline samples. Physical Chemistry Chemical Physics, 2015, 17, 10774-10780.	1.3	8
61	Al/Fe isomorphic substitution versus Fe2O3 clusters formation in Fe-doped aluminosilicate nanotubes (imogolite). Journal of Nanoparticle Research, 2015, 17, 1.	0.8	31
62	Fe- and V-doped mesoporous titania prepared by direct synthesis: Characterization and role in the oxidation of AO7 by H2O2 in the dark. Catalysis Today, 2014, 227, 71-79.	2.2	27
63	Measuring the BrÃ,nsted acid strength of zeolites – does it correlate with the O–H frequency shift probed by a weak base?. Physical Chemistry Chemical Physics, 2014, 16, 10129-10141.	1.3	62
64	The behaviour of an old catalyst revisited in a wet environment: Co ions in APO-5 split water under mild conditions. Physical Chemistry Chemical Physics, 2014, 16, 7074-7082.	1.3	7
65	Outer Co(ii) ions in Co-ZIF-67 reversibly adsorb oxygen from both gas phase and liquid water. Physical Chemistry Chemical Physics, 2014, 16, 6139.	1.3	66
66	A new method for studying activity and reaction kinetics of photocatalytic water oxidation systems using a bubbling reactor. Chemical Engineering Journal, 2014, 238, 17-26.	6.6	21
67	Imogolite: An Aluminosilicate Nanotube Endowed with Low Cytotoxicity and Genotoxicity. Chemical Research in Toxicology, 2014, 27, 1142-1154.	1.7	26
68	Eu-doped \hat{l}_{\pm} -Fe2O3 nanoparticles with modified magnetic properties. Journal of Solid State Chemistry, 2013, 201, 302-311.	1.4	39
69	An IR and XPS spectroscopy assessment of the physico-chemical surface properties of alumina–YAG nanopowders. Materials Chemistry and Physics, 2013, 143, 286-295.	2.0	13
70	IR spectroscopic study of the acidic properties of alumino-silicate single-walled nanotubes of the imogolite type. Catalysis Today, 2013, 218-219, 3-9.	2.2	11
71	Photodarkening of Infrared Irradiated Yb3+-Doped Alumino-Silicate Glasses: Effect on UV Absorption Bands and Fluorescence Spectra. Fibers, 2013, 1, 101-109.	1.8	6
72	Spectroscopic investigation of Nd3+ single doped and Eu3+/Nd3+ co-doped phosphate glass for solar pumped lasers. Journal of Non-Crystalline Solids, 2013, 377, 100-104.	1.5	20

#	Article	IF	Citations
73	Modes of Interaction of Simazine with the Surface of Model Amorphous Silicas in Water. Journal of Physical Chemistry C, 2013, 117, 11203-11210.	1.5	16
74	Surface properties of alumino-silicate single-walled nanotubes of the imogolite type. Physical Chemistry Chemical Physics, 2013, 15, 13381.	1.3	32
75	Visible-Light Driven Oxidation of Water as Catalyzed by Co-APO-5 in the Presence of Ru Sensitizer. ACS Catalysis, 2013, 3, 1272-1278.	5.5	25
76	Modes of Interaction of Simazine with the Surface of Amorphous Silica in Water. Part II: Adsorption at Temperatures Higher than Ambient. Journal of Physical Chemistry C, 2013, 117, 27047-27051.	1.5	6
77	CoAPO5 as a water oxidation catalyst and a light sensitizer. Chemical Communications, 2012, 48, 5754.	2.2	17
78	Hematite Nanoparticles Larger than 90 nm Show No Sign of Toxicity in Terms of Lactate Dehydrogenase Release, Nitric Oxide Generation, Apoptosis, and Comet Assay in Murine Alveolar Macrophages and Human Lung Epithelial Cells. Chemical Research in Toxicology, 2012, 25, 850-861.	1.7	47
79	CO ₂ Adsorption on Aluminosilicate Single-Walled Nanotubes of Imogolite Type. Journal of Physical Chemistry C, 2012, 116, 20417-20425.	1.5	33
80	Physico-Chemical Properties of Imogolite Nanotubes Functionalized on Both External and Internal Surfaces. Journal of Physical Chemistry C, 2012, 116, 7499-7506.	1.5	42
81	Thermal Collapse of Single-Walled Alumino-Silicate Nanotubes: Transformation Mechanisms and Morphology of the Resulting Lamellar Phases. Journal of Physical Chemistry C, 2012, 116, 23577-23584.	1.5	19
82	An IR spectroscopy assessment of the surface acidity of mesoporous VO $\hat{a} \in \text{``SiO2'}$ catalysts. Microporous and Mesoporous Materials, 2012, 164, 111-119.	2.2	24
83	Spectroscopic Enlightening of the Local Structure Of VO _X Active Sites in Catalysts for the Odh of Propane. Journal of Physical Chemistry C, 2012, 116, 22386-22398.	1.5	30
84	Effect of vanadium dispersion and of support properties on the catalytic activity of V-containing silicas. Catalysis Today, 2012, 179, 140-148.	2.2	35
85	Direct coupling of H 2 production through a high pressure PEM electrolyzer and its storage by physisorption on microporous materials. International Journal of Hydrogen Energy, 2012, 37, 1292-1300.	3.8	8
86	Synthesis and characterization of hybrid organic/inorganic nanotubes of the imogolite type and their behaviour towards methane adsorption. Physical Chemistry Chemical Physics, 2011, 13, 744-750.	1.3	102
87	Reactions of Acid Orange 7 with Iron Nanoparticles in Aqueous Solutions. Journal of Physical Chemistry C, 2011, 115, 24143-24152.	1.5	55
88	Energy Storage: Regenerative Fuel Cell Systems for Space Exploration. , 2011, , .		0
89	Effect of vanadium dispersion and support properties on the catalytic activity of V-SBA-15 and V-MCF mesoporous materials prepared by direct synthesis. Catalysis Today, 2011, 176, 458-464.	2.2	27
90	Study of hydrogen physisorption on nanoporous carbon materials of different origin. International Journal of Hydrogen Energy, 2011, 36, 7937-7943.	3.8	24

#	Article	IF	Citations
91	Novel vanadium-containing mesocellular foams (V-MCF) obtained by direct synthesis. Microporous and Mesoporous Materials, 2011, 142, 45-54.	2.2	27
92	Nanoporous carbon materials obtained by sucrose carbonization in the presence of KOH. Microporous and Mesoporous Materials, 2010, 132, 414-420.	2.2	110
93	Study of the effect of prolonged magnetic stirring on the physico-chemical surface properties of nanometric transition alumina. Journal of Materials Science, 2010, 45, 6115-6125.	1.7	10
94	The control of selectivity in benzene hydroxylation catalyzed by TS-1: The solvent effect and the role of crystallite size. Journal of Catalysis, 2010, 275, 158-169.	3.1	48
95	Ammoniaâ€Solvated Ammonium Species in the NH ₄ â€ZSMâ€5 Zeolite. ChemPhysChem, 2010, 11, 3255-3261.	1.0	12
96	Vanadium-containing SBA-15 systems prepared by direct synthesis: Physico-chemical and catalytic properties in the decomposition of dichloromethane. Microporous and Mesoporous Materials, 2010, 133, 36-44.	2.2	44
97	Thermodynamic Features of the Reaction of Ammonia with the Acidic Proton of H-ZSM-5 As Studied by Variable-Temperature IR Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 6658-6662.	1.5	10
98	H-Bonding of Furan and Its Hydrogenated Derivatives with the Isolated Hydroxyl of Amorphous Silica: An IR Spectroscopic and Thermodynamic Study. Journal of Physical Chemistry C, 2010, 114, 18233-18239.	1.5	19
99	IR spectroscopic and catalytic characterization of the acidity of imogolite-based systems. Journal of Catalysis, 2009, 264, 15-30.	3.1	67
100	Thermodynamics of Carbon Dioxide Adsorption on the Protonic Zeolite Hâ€ZSMâ€5. ChemPhysChem, 2009, 10, 3316-3319.	1.0	28
101	Role of the dispersion route on the phase transformation of a nano-crystalline transition alumina. Journal of Thermal Analysis and Calorimetry, 2009, 97, 223-229.	2.0	11
102	Thermodynamics of hydrogen adsorption on calcium-exchanged faujasite-type zeolites. International Journal of Hydrogen Energy, 2009, 34, 4371-4378.	3.8	36
103	V–Al–O catalysts prepared by flame pyrolysis for the oxidative dehydrogenation of propane to propylene. Catalysis Today, 2009, 141, 271-281.	2.2	32
104	Formation of a Vitreous Phase at the Surface of Some Commercial Diatomaceous Earth Prevents the Onset of Oxidative Stress Effects. Chemical Research in Toxicology, 2009, 22, 136-145.	1.7	13
105	Enthalpy–entropy correlation for hydrogen adsorption on zeolites. Chemical Physics Letters, 2008, 456, 68-70.	1.2	90
106	Post-synthesis modifications of SBA-15 carbon replicas: Improving hydrogen storage by increasing microporous volume. Catalysis Today, 2008, 138, 244-248.	2.2	35
107	Role of microporosity in hydrogen adsorption on templated nanoporous carbons. Microporous and Mesoporous Materials, 2008, 112, 411-418.	2.2	62
108	V2O5–SiO2 systems prepared by flame pyrolysis as catalysts for the oxidative dehydrogenation of propane. Journal of Catalysis, 2008, 256, 45-61.	3.1	57

#	Article	IF	Citations
109	Variableâ€Temperature Infrared Spectroscopy Studies on the Thermodynamics of CO Adsorption on the Zeolite Ca–Y. ChemPhysChem, 2008, 9, 1747-1751.	1.0	14
110	Accessibility of the Functional Groups of Chitosan Aerogel Probed by FT-IR-Monitored Deuteration. Biomacromolecules, 2007, 8, 3646-3650.	2.6	95
111	Vanadyl phosphate catalysts in biodiesel production. Applied Catalysis A: General, 2007, 320, 1-7.	2.2	109
112	Beckmann rearrangement reaction: About the role of defect groups in high silica zeolite catalysts. Microporous and Mesoporous Materials, 2007, 101, 153-160.	2.2	62
113	Synthesis and characterization of ordered porous carbons with potential applications as hydrogen storage media. Microporous and Mesoporous Materials, 2007, 103, 150-157.	2.2	53
114	Study of the surface acidity of TiO2/SiO2 catalysts by means of FTIR measurements of CO and NH3 adsorption. Journal of Catalysis, 2007, 246, 293-300.	3.1	88
115	FT-IR spectroscopic and catalytic study of de-aluminated H-mordenites as environmental friendly catalysts in the hydroxymethylation of 2-methoxyphenol with formaldehyde in aqueous medium. Applied Catalysis B: Environmental, 2007, 70, 585-596.	10.8	18
116	FT-IR characterization of Al-rich Li-, Na- and Ca-HMS. Journal of Porous Materials, 2007, 14, 299-304.	1.3	0
117	FTIR Spectroscopy of NH3on Acidic and Ionotropic Alginate Aerogels. Biomacromolecules, 2006, 7, 877-882.	2.6	54
118	Molecular Water on Exposed Al3+ Cations Is a Source of Acidity in Silicoaluminas. Journal of Physical Chemistry B, 2006, 110, 19087-19092.	1.2	28
119	Characterisation of Al-rich microporous micelle-templated silicates. Part II: Spectroscopic and microcalorimetric study of the accessibility of exchanged alkali-cations to carbon dioxide. Microporous and Mesoporous Materials, 2006, 87, 170-176.	2.2	7
120	Effect of post-synthesis treatment on the stability and surface properties of MCM-48 silica. Microporous and Mesoporous Materials, 2005, 83, 172-180.	2.2	34
121	One-pot synthesis and characterization of HMS silica carrying Disperse-Red-1 (DR1) covalently bonded to the inner surface. Comptes Rendus Chimie, 2005, 8, 655-661.	0.2	7
122	MoO3â€"WO3 mixed oxide powder and thin films for gas sensing devices: A spectroscopic characterisation. Sensors and Actuators B: Chemical, 2005, 111-112, 28-35.	4.0	19
123	Acidity of Alginate Aerogels Studied by FTIR Spectroscopy of Probe Molecules. Macromolecular Symposia, 2005, 230, 71-77.	0.4	30
124	Ferreting out gas adsorption heats: the pseudo-isobaric method. Physical Chemistry Chemical Physics, 2005, 7, 3519.	1.3	6
125	In Situ Infrared Study of SBA-15 Functionalized with Carboxylic Groups Incorporated by a Co-condensation Route. Journal of Physical Chemistry B, 2005, 109, 16725-16729.	1.2	85
126	Spectroscopic characterisation of the strength and stability of the acidic sites of Al-rich microporous micelle-templated silicates. Microporous and Mesoporous Materials, 2004, 67, 95-106.	2.2	37

#	Article	IF	CITATIONS
127	Guaiacol hydroxyalkylation with aqueous formaldehyde: role of surface properties of H-mordenites on catalytic performance. Applied Catalysis A: General, 2004, 272, 115-124.	2.2	17
128	Mesostructured SBA-3 silica containing Reichardt's dye as an optical ammonia sensor. Chemical Communications, 2004, , 2496-2497.	2,2	16
129	Room temperature interaction of co with alkali-metal cations in M-ZSM-5 zeolites as studied by joint FT-IR spectroscopy and microcalorimetry. Studies in Surface Science and Catalysis, 2004, 154, 1686-1692.	1.5	5
130	IR study of the acidity of ITQ-2, an "all-surface―zeolitic system. Journal of Catalysis, 2003, 214, 191-199.	3.1	57
131	Thermodynamics of hydrogen adsorption on the zeolite Li-ZSM-5. Chemical Physics Letters, 2003, 370, 631-635.	1.2	94
132	Spectroscopic and Thermodynamic Characterization of Strontium Carbonyls Formed upon Carbon Monoxide Adsorption on the Zeolite Srâ~'Y. Journal of Physical Chemistry B, 2003, 107, 2537-2542.	1.2	22
133	Two distinguishable lithium sites in the zeolite Li-ZSM-5 as revealed by adsorption of CO: an infrared spectroscopic and thermodynamic characterisation. Physical Chemistry Chemical Physics, 2003, 5, 2900-2905.	1.3	27
134	HMS materials with high Al loading: a joint FT-IR and microcalorimetric study of their acidic/basic properties. Studies in Surface Science and Catalysis, 2003, 146, 319-322.	1.5	2
135	Accessibility of dye-molecules embedded in the micellar phase of hybrid mesostructured MCM41-type materials Studies in Surface Science and Catalysis, 2003, , 379-382.	1.5	0
136	Coupling of framework modes and adsorbate vibrations for CO2 molecularly adsorbed on alkali ZSM-5 zeolites: Mid- and far-infrared spectroscopy andab initiomodeling. Journal of Chemical Physics, 2002, 117, 10274-10282.	1.2	52
137	IR Evidence that Secondary Interactions May Hamper H-Bonding at Protonic Sites in Zeolites. Journal of Physical Chemistry B, 2002, 106, 10518-10522.	1.2	18
138	Variable-temperature infrared spectroscopy: An access to adsorption thermodynamics of weakly interacting systems. Physical Chemistry Chemical Physics, 2002, 4, 5713-5715.	1.3	69
139	Adducts of alkali-metal ions with the CC triple bond: an experimental and ab initio study. Physical Chemistry Chemical Physics, 2002, 4, 1658-1664.	1.3	10
140	Al-MCM-41 systems exchanged with alkali–metal cations: FT-IR characterization and catalytic activity towards 1-butene isomerization. Microporous and Mesoporous Materials, 2002, 54, 305-317.	2.2	14
141	Formation and partial self-healing of lattice defects during thermal treatments of GaZSM-5: An FTIR study using CO as a probe molecule. Physical Chemistry Chemical Physics, 2001, 3, 1223-1227.	1.3	16
142	Synthesis and Characterization of dye-containing MCM-41 materials. Studies in Surface Science and Catalysis, 2001, 140, 361-368.	1.5	0
143	Preparation and characterization of mesoporous molecular sieves containing Al, Fe or Zn. Microporous and Mesoporous Materials, 2001, 44-45, 275-281.	2.2	28
144	Retention properties of mesoporous silica-based materials. Analytica Chimica Acta, 2000, 422, 231-238.	2.6	24

#	Article	IF	CITATIONS
145	Title is missing!. Journal of Cluster Science, 2000, 11, 307-326.	1.7	17
146	Vibrational and Thermodynamic Study of the Adsorption of Carbon Dioxide on the Zeolite Naâ^'ZSM-5. Langmuir, 2000, 16, 4976-4983.	1.6	83
147	Experimental and Quantum Chemical Studies on the Adsorption of Carbon Dioxide on Alkali-Metal-Exchanged ZSM-5 Zeolites. Journal of Physical Chemistry B, 2000, 104, 10978-10988.	1.2	156
148	Thermodynamics of CO adsorption on the zeolite Na-ZSM-5 A combined microcalorimetric and FTIR spectroscopic study. Physical Chemistry Chemical Physics, 1999, 1, 513-518.	1.3	71
149	Mesoporous Titania: Synthesis, Properties and Comparison with Non-Porous Titania. , 0, , .		8
150	Hydrogen storage via physisorption: the combined role of adsorption enthalpy and entropy. Turkish Journal of Chemistry, 0 , 0 , 0 .	0.5	6