List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4653616/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Differential Expression of Kisspeptin System and Kisspeptin Receptor Trafficking during Spermatozoa<br>Transit in the Epididymis. Genes, 2022, 13, 295.                                                                                                                   | 1.0 | 9         |
| 2  | Characterization of Estrogenic Activity and Site-Specific Accumulation of Bisphenol-A in Epididymal<br>Fat Pad: Interfering Effects on the Endocannabinoid System and Temporal Progression of Germ Cells.<br>International Journal of Molecular Sciences, 2021, 22, 2540. | 1.8 | 5         |
| 3  | LINCking the Nuclear Envelope to Sperm Architecture. Genes, 2021, 12, 658.                                                                                                                                                                                                | 1.0 | 12        |
| 4  | CRISP2, CATSPER1 and PATE1 Expression in Human Asthenozoospermic Semen. Cells, 2021, 10, 1956.                                                                                                                                                                            | 1.8 | 7         |
| 5  | Kisspeptin Receptor on the Sperm Surface Reflects Epididymal Maturation in the Dog. International<br>Journal of Molecular Sciences, 2021, 22, 10120.                                                                                                                      | 1.8 | 8         |
| 6  | Multi-Systemic Alterations by Chronic Exposure to a Low Dose of Bisphenol A in Drinking Water:<br>Effects on Inflammation and NAD+-Dependent Deacetylase Sirtuin1 in Lactating and Weaned Rats.<br>International Journal of Molecular Sciences, 2021, 22, 9666.           | 1.8 | 11        |
| 7  | Kisspeptins, new local modulators of male reproduction: A comparative overview. General and<br>Comparative Endocrinology, 2020, 299, 113618.                                                                                                                              | 0.8 | 17        |
| 8  | The Cannabinoid Receptor CB1 Stabilizes Sperm Chromatin Condensation Status During Epididymal<br>Transit by Promoting Disulphide Bond Formation. International Journal of Molecular Sciences, 2020,<br>21, 3117.                                                          | 1.8 | 11        |
| 9  | Histone Post-Translational Modifications and CircRNAs in Mouse and Human Spermatozoa: Potential<br>Epigenetic Marks to Assess Human Sperm Quality. Journal of Clinical Medicine, 2020, 9, 640.                                                                            | 1.0 | 37        |
| 10 | CircRNA Role and circRNA-Dependent Network (ceRNET) in Asthenozoospermia. Frontiers in Endocrinology, 2020, 11, 395.                                                                                                                                                      | 1.5 | 33        |
| 11 | The Epigenetics of the Endocannabinoid System. International Journal of Molecular Sciences, 2020, 21, 1113.                                                                                                                                                               | 1.8 | 46        |
| 12 | Fetal-Perinatal Exposure to Bisphenol-A Affects Quality of Spermatozoa in Adulthood Mouse.<br>International Journal of Endocrinology, 2020, 2020, 1-8.                                                                                                                    | 0.6 | 12        |
| 13 | Expression Patterns of Circular RNAs in High Quality and Poor Quality Human Spermatozoa. Frontiers<br>in Endocrinology, 2019, 10, 435.                                                                                                                                    | 1.5 | 36        |
| 14 | Neuro-toxic and Reproductive Effects of BPA. Current Neuropharmacology, 2019, 17, 1109-1132.                                                                                                                                                                              | 1.4 | 141       |
| 15 | CircNAPEPLD is expressed in human and murine spermatozoa and physically interacts with oocyte miRNAs. RNA Biology, 2019, 16, 1237-1248.                                                                                                                                   | 1.5 | 31        |
| 16 | Chronic exposure to low dose of bisphenol A impacts on the first round of spermatogenesis via SIRT1 modulation. Scientific Reports, 2018, 8, 2961.                                                                                                                        | 1.6 | 61        |
| 17 | Characterization of Follicular Atresia Responsive to BPA in Zebrafish by Morphometric Analysis of Follicular Stage Progression. International Journal of Endocrinology, 2018, 2018, 1-10.                                                                                 | 0.6 | 21        |
| 18 | Editorial: The Multiple Facets of Kisspeptin Activity in Biological Systems. Frontiers in Endocrinology, 2018. 9. 727.                                                                                                                                                    | 1.5 | 11        |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Analysis of Endocannabinoid System in Rat Testis During the First Spermatogenetic Wave. Frontiers in<br>Endocrinology, 2018, 9, 269.                                                        | 1.5 | 12        |
| 20 | Impact of Dietary Fats on Brain Functions. Current Neuropharmacology, 2018, 16, 1059-1085.                                                                                                  | 1.4 | 95        |
| 21 | Kisspeptin regulates steroidogenesis and spermiation in anuran amphibian. Reproduction, 2017, 154, 403-414.                                                                                 | 1.1 | 26        |
| 22 | Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells. Frontiers in Endocrinology, 2016, 7, 47.                                                                                      | 1.5 | 19        |
| 23 | Bisphenol A induces hypothalamic down-regulation of the the cannabinoid receptor 1 and anorexigenic effects in male mice. Pharmacological Research, 2016, 113, 376-383.                     | 3.1 | 24        |
| 24 | Anandamide acts via kisspeptin in the regulation of testicular activity of the frog, Pelophylax<br>esculentus. Molecular and Cellular Endocrinology, 2016, 420, 75-84.                      | 1.6 | 19        |
| 25 | Kisspeptins, Estrogens and Male Fertility. Current Medicinal Chemistry, 2016, 23, 4070-4091.                                                                                                | 1.2 | 47        |
| 26 | Expression Analysis of <i>Gnrh1</i> and <i>Gnrhr1</i> in Spermatogenic Cells of Rat. International Journal of Endocrinology, 2015, 2015, 1-8.                                               | 0.6 | 26        |
| 27 | Kisspeptin drives germ cell progression in the anuran amphibian Pelophylax esculentus: A study carried out in ex vivo testes. General and Comparative Endocrinology, 2015, 211, 81-91.      | 0.8 | 32        |
| 28 | Modulators of Hypothalamicââ,¬â€œPituitaryââ,¬â€œGonadal Axis for the Control of Spermatogenesis and<br>Sperm Quality in Vertebrates. Frontiers in Endocrinology, 2014, 5, 135.             | 1.5 | 13        |
| 29 | Endocannabinoids are Involved in Male Vertebrate Reproduction: Regulatory Mechanisms at Central and Gonadal Level. Frontiers in Endocrinology, 2014, 5, 54.                                 | 1.5 | 43        |
| 30 | Intra-Testicular Signals Regulate Germ Cell Progression and Production of Qualitatively Mature<br>Spermatozoa in Vertebrates. Frontiers in Endocrinology, 2014, 5, 69.                      | 1.5 | 51        |
| 31 | Molecular Chaperones, Cochaperones, and Ubiquitination/Deubiquitination System: Involvement in the Production of High Quality Spermatozoa. BioMed Research International, 2014, 2014, 1-10. | 0.9 | 30        |
| 32 | Hypothalamus–pituitary axis: An obligatory target for endocannabinoids to inhibit steroidogenesis in<br>frog testis. General and Comparative Endocrinology, 2014, 205, 88-93.               | 0.8 | 13        |
| 33 | Nuclear size as estrogen-responsive chromatin quality parameter of mouse spermatozoa. General and<br>Comparative Endocrinology, 2013, 193, 201-209.                                         | 0.8 | 27        |
| 34 | Kisspeptin Receptor, GPR54, as a Candidate for the Regulation of Testicular Activity in the Frog Rana esculenta1. Biology of Reproduction, 2013, 88, 73.                                    | 1.2 | 36        |
| 35 | Endocannabinoids and Endovanilloids: A Possible Balance in the Regulation of the Testicular GnRH<br>Signalling. International Journal of Endocrinology, 2013, 2013, 1-9.                    | 0.6 | 8         |
| 36 | Estrogens and Spermiogenesis: New Insights from Type 1 Cannabinoid Receptor Knockout Mice.<br>International Journal of Endocrinology, 2013, 2013, 1-12.                                     | 0.6 | 43        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Low 17beta-Estradiol Levels in Cnr1 Knock-Out Mice Affect Spermatid Chromatin Remodeling by<br>Interfering with Chromatin Reorganization. Biology of Reproduction, 2013, 88, 152-152.                                  | 1.2 | 47        |
| 38 | Anandamide regulates the expression of GnRH1, GnRH2, and GnRH-Rs in frog testis. American Journal of<br>Physiology - Endocrinology and Metabolism, 2012, 303, E475-E487.                                               | 1.8 | 31        |
| 39 | The role of endocannabinoids in gonadal function and fertility along the evolutionary axis.<br>Molecular and Cellular Endocrinology, 2012, 355, 1-14.                                                                  | 1.6 | 71        |
| 40 | The contribution of lower vertebrate animal models in human reproduction research. General and Comparative Endocrinology, 2011, 171, 17-27.                                                                            | 0.8 | 37        |
| 41 | Anandamide modulates the expression of GnRH-II and GnRHRs in frog, Rana esculenta, diencephalon.<br>General and Comparative Endocrinology, 2011, 173, 389-395.                                                         | 0.8 | 23        |
| 42 | A Gradient of 2-Arachidonoylglycerol Regulates Mouse Epididymal Sperm Cell Start-Up1. Biology of Reproduction, 2010, 82, 451-458.                                                                                      | 1.2 | 77        |
| 43 | Cannabinoids and Reproduction: A Lasting and Intriguing History. Pharmaceuticals, 2010, 3, 3275-3323.                                                                                                                  | 1.7 | 28        |
| 44 | Cannabinoid Receptor 1 Influences Chromatin Remodeling in Mouse Spermatids by Affecting Content of Transition Protein 2 mRNA and Histone Displacement. Endocrinology, 2010, 151, 5017-5029.                            | 1.4 | 85        |
| 45 | Global Gene Expression Profiling Of Human Pleural Mesotheliomas: Identification of Matrix<br>Metalloproteinase 14 (MMP-14) as Potential Tumour Target. PLoS ONE, 2009, 4, e7016.                                       | 1.1 | 73        |
| 46 | Chapter 14 CB1 Activity in Male Reproduction: Mammalian and Nonmammalian Animal Models. Vitamins and Hormones, 2009, 81, 367-387.                                                                                      | 0.7 | 29        |
| 47 | Testicular Gonadotropinâ€releasing Hormone Activity, Progression of Spermatogenesis, and Sperm<br>Transport in Vertebrates. Annals of the New York Academy of Sciences, 2009, 1163, 279-291.                           | 1.8 | 34        |
| 48 | The Endocannabinoid System: An Ancient Signaling Involved in the Control of Male Fertility. Annals of the New York Academy of Sciences, 2009, 1163, 112-124.                                                           | 1.8 | 38        |
| 49 | Estrogen regulation of the male reproductive tract in the frog, Rana esculenta: A role in Fra-1 activation in peritubular myoid cells and in sperm release. General and Comparative Endocrinology, 2008, 155, 838-846. | 0.8 | 25        |
| 50 | The endocannabinoid system in vertebrate male reproduction: A comparative overview. Molecular and<br>Cellular Endocrinology, 2008, 286, S24-S30.                                                                       | 1.6 | 47        |
| 51 | Non-mammalian vertebrate models and the endocannabinoid system: Relationships with gonadotropin-releasing hormone. Molecular and Cellular Endocrinology, 2008, 286, S46-S51.                                           | 1.6 | 21        |
| 52 | Editorial. Molecular and Cellular Endocrinology, 2008, 286, S1-S2.                                                                                                                                                     | 1.6 | 0         |
| 53 | Expression of Type-1 Cannabinoid Receptor During Rat Postnatal Testicular Development: Possible<br>Involvement in Adult Leydig Cell Differentiation1. Biology of Reproduction, 2008, 79, 758-765.                      | 1.2 | 58        |
| 54 | Interplay between the Endocannabinoid System and GnRH-I in the Forebrain of the Anuran Amphibian<br>Rana esculenta. Endocrinology, 2008, 149, 2149-2158.                                                               | 1.4 | 47        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Cloning of type $\hat{e}f1$ cannabinoid receptor in Rana esculenta reveals differences between genomic sequence and cDNA. FEBS Journal, 2007, 274, 2909-2920.                                                                           | 2.2 | 19        |
| 56 | UBPy/MSJ-1 system during male germ cell progression in the frog, Rana esculenta. General and Comparative Endocrinology, 2007, 153, 275-279.                                                                                             | 0.8 | 6         |
| 57 | Endocannabinoid control of sperm motility: The role of epididymus. General and Comparative<br>Endocrinology, 2007, 153, 320-322.                                                                                                        | 0.8 | 74        |
| 58 | Type-1 cannabinoid receptor expression in the frog,Rana esculenta, tissues: A possible involvement in the regulation of testicular activity. Molecular Reproduction and Development, 2006, 73, 551-558.                                 | 1.0 | 36        |
| 59 | Endocannabinoid System in Frog and Rodent Testis: Type-1 Cannabinoid Receptor and Fatty Acid Amide<br>Hydrolase Activity in Male Germ Cells1. Biology of Reproduction, 2006, 75, 82-89.                                                 | 1.2 | 94        |
| 60 | Fra-1 Activity in the Frog,Rana esculenta, Testis. Annals of the New York Academy of Sciences, 2005, 1040, 264-268.                                                                                                                     | 1.8 | 6         |
| 61 | Fra1 Activity in the Frog, Rana esculenta, Testis: A New Potential Role in Sperm Transport1. Biology of Reproduction, 2005, 72, 1101-1108.                                                                                              | 1.2 | 14        |
| 62 | Detection ofmsj-1 gene expression in the frog,Rana esculenta testis, brain, and spinal cord. Molecular<br>Reproduction and Development, 2004, 68, 149-158.                                                                              | 1.0 | 7         |
| 63 | Intratesticular signals for progression of germ cell stages in vertebrates. General and Comparative Endocrinology, 2003, 134, 220-228.                                                                                                  | 0.8 | 17        |
| 64 | Cytoplasmic Versus Nuclear Localization of Fos-Related Proteins in the Frog, Rana esculenta, Testis: In<br>Vivo and Direct In Vitro Effect of a Gonadotropin-Releasing Hormone Agonist1. Biology of<br>Reproduction, 2003, 68, 954-960. | 1.2 | 24        |
| 65 | Cytoplasmic and Nuclear Fos Protein Forms Regulate Resumption of Spermatogenesis in the<br>Frog, <i>Rana esculenta</i> . Endocrinology, 2002, 143, 163-170.                                                                             | 1.4 | 47        |
| 66 | Mouse Sperm Cell-Specific DnaJ First Homologue: An Evolutionarily Conserved Protein for Spermiogenesis1. Biology of Reproduction, 2002, 66, 1328-1335.                                                                                  | 1.2 | 24        |
| 67 | Evolutionary Aspects of Cellular Communication in the Vertebrate<br>Hypothalamo–Hypophysio–Gonadal Axis. International Review of Cytology, 2002, 218, 69-143e.                                                                          | 6.2 | 90        |
| 68 | Effects of multiple injections of ethane 1,2-dimethane sulphonate (EDS) on the frog,Rana esculenta,<br>testicular activity. The Journal of Experimental Zoology, 2000, 287, 384-393.                                                    | 1.4 | 10        |
| 69 | c-fos Activity in Rana esculenta Testis: Seasonal and Estradiol-Induced Changes*. Endocrinology, 1999,<br>140, 3238-3244.                                                                                                               | 1.4 | 50        |
| 70 | Neuroendocrine and Local Control of the Frog Testisa. Annals of the New York Academy of Sciences, 1998, 839, 260-264.                                                                                                                   | 1.8 | 2         |
| 71 | c-fos- and c-jun-like mRNA Expression in Frog (Rana esculenta) Testis during the Annual Reproductive<br>Cycle. General and Comparative Endocrinology, 1997, 106, 23-29.                                                                 | 0.8 | 16        |
| 72 | $17\hat{l}^2$ -estradiol effects on mast cell number and spermatogonial mitotic index in the testis of the                                                                                                                              |     | 53        |

frog,Rana esculenta. , 1997, 278, 93-100.

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Induction of S-phase entry by a gonadotropin releasing hormone agonist (buserelin) in the frog, Rana<br>esculenta, primary spermatogonia. Comparative Biochemistry and Physiology C, Comparative<br>Pharmacology and Toxicology, 1996, 113, 99-102.                          | 0.5 | 7         |
| 74 | Ethane 1,2-dimethane Sulfonate Effects on the Testis of the Lizard, Podarcis s. sicula Raf:<br>Morphological and Hormonal Changes. General and Comparative Endocrinology, 1995, 97, 273-282.                                                                                 | 0.8 | 20        |
| 75 | Changes in Proto-oncogene Activity in the Testis of the Frog, Rana esculenta, during the Annual<br>Reproductive Cycle. General and Comparative Endocrinology, 1995, 99, 127-136.                                                                                             | 0.8 | 23        |
| 76 | Chicken GnRH-II and salmon GnRH effects on plasma and testicular androgen concentrations in the<br>male frog, Rana esculenta, during the annual reproductive cycle. Comparative Biochemistry and<br>Physiology C, Comparative Pharmacology and Toxicology, 1995, 112, 79-86. | 0.5 | 5         |
| 77 | Detection of c-mos related products in the dogfish (Scyliorhinus canicula) testis. Molecular and<br>Cellular Endocrinology, 1995, 109, 127-132.                                                                                                                              | 1.6 | 11        |
| 78 | Regeneration of the Testicular Interstitial Compartment after Ethane Dimethane Sulfonate Treatment<br>in the Hypophysectomized Frog Rana esculenta: Independence of Pituitary Control. General and<br>Comparative Endocrinology, 1994, 95, 84-91.                            | 0.8 | 8         |
| 79 | Two GnRHs fluctuate in correlation with androgen levels in the male frogRana esculenta. The Journal of Experimental Zoology, 1993, 266, 277-283.                                                                                                                             | 1.4 | 32        |
| 80 | Morpho-functional aspects of the hypothalanus-pituitary-gonadal axis of elasmobranch fishes.<br>Environmental Biology of Fishes, 1993, 38, 187-196.                                                                                                                          | 0.4 | 15        |
| 81 | Dopamine regulation of testicular activity in intact and hypophysectomized frogs,Rana esculenta.<br>Experientia, 1993, 49, 65-67.                                                                                                                                            | 1.2 | 6         |
| 82 | Gonadotropin-releasing hormone in elasmobranch (electric ray, Torpedo marmorata) brain and<br>plasma: Chromatographic and immunological evidence for chicken GnRH II and novel molecular<br>forms. Peptides, 1992, 13, 27-35.                                                | 1.2 | 22        |
| 83 | Effects of gonadotropin-releasing hormone variants on plasma and testicular androgen levels in<br>intact and hypophysectomized male frogs,Rana esculenta. The Journal of Experimental Zoology, 1992,<br>261, 34-39.                                                          | 1.4 | 16        |
| 84 | Intratesticular control of spermatogenesis in the frog,Rana esculenta. The Journal of Experimental<br>Zoology, 1992, 264, 113-118.                                                                                                                                           | 1.4 | 24        |
| 85 | Immunoreactive GnRH in Hypothalamic and Extrahypothalamic Areas. International Review of Cytology, 1991, 127, 1-55.                                                                                                                                                          | 6.2 | 75        |
| 86 | Sites of action of local estradiol feedback mechanism in the frog (Rana esculenta) testis. General and<br>Comparative Endocrinology, 1991, 81, 492-499.                                                                                                                      | 0.8 | 21        |
| 87 | Effects of cyproterone acetate on testicular and plasma androgen levels in the frog, Rana esculenta.<br>Rendiconti Lincei, 1991, 2, 403-407.                                                                                                                                 | 1.0 | 1         |
| 88 | Effects of photoperiod on plasma steroid hormone levels in the Gentile di Puglia ram. Rendiconti<br>Lincei, 1991, 2, 409-414.                                                                                                                                                | 1.0 | 0         |
| 89 | Morphological and hormonal changes in the frog, Rana esculenta, testis after administration of ethane dimethane sulfonate. General and Comparative Endocrinology, 1990, 79, 335-345.                                                                                         | 0.8 | 32        |
| 90 | Indirect evidence for a physiological role exerted by a "Testicular gonadotropin-releasing hormone―<br>in the frog, Rana esculenta. General and Comparative Endocrinology, 1990, 79, 147-153.                                                                                | 0.8 | 8         |

| #   | Article                                                                                                                                                                                                                                                                                        | lF              | CITATIONS         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|
| 91  | Regulation of the testicular activity in the marine teleost fish, Gobius paganellus. General and<br>Comparative Endocrinology, 1990, 80, 1-8.                                                                                                                                                  | 0.8             | 12                |
| 92  | Characterization of gonadotropin-releasing hormone (GnRH) binding sites in the pituitary and testis of the frog, Ranaesculenta. Biochemical and Biophysical Research Communications, 1990, 168, 923-932.                                                                                       | 1.0             | 38                |
| 93  | Seasonal fluctuations of estrogen-binding activity in the testis of the frog, Rana esculenta. General and Comparative Endocrinology, 1989, 75, 157-161.                                                                                                                                        | 0.8             | 21                |
| 94  | Intratesticular feedback mechanisms in the regulation of steroid profiles in the frog, Rana esculenta.<br>General and Comparative Endocrinology, 1989, 75, 335-342.                                                                                                                            | 0.8             | 53                |
| 95  | Molecular forms of immunoreactive gonadotropin-releasing hormone in hypothalamus and testis of the frog, Rana esculenta. General and Comparative Endocrinology, 1989, 75, 343-348.                                                                                                             | 0.8             | 49                |
| 96  | Reproductive biology of elasmobranchs with emphasis on endocrines. The Journal of Experimental Zoology, 1989, 252, 53-61.                                                                                                                                                                      | 1.4             | 10                |
| 97  | A Gonadotropin-Releasing Hormone (GnRH) Antagonist Decreases Androgen Production and<br>Spermatogonial Multiplication in Frog (Rana esculenta): Indirect Evidence for the Existence of GnRH<br>or GnRH-Like Material Receptors in the Hypophysis and Testis*. Endocrinology, 1988, 122, 62-67. | 1.4             | 43                |
| 98  | Seasonal plasma and intraovarian sex steroid profiles, and influence of temperature on gonadotropin<br>stimulation of in vitro estradiol-17l² and progesterone production, in Rana esculenta (Amphibia: Anura).<br>General and Comparative Endocrinology, 1987, 67, 163-168.                   | 0.8             | 16                |
| 99  | Effect of temperature and darkness on testosterone concentration in the testes of intact frogs (Rana) Tj ETQq1 1<br>Endocrinology, 1985, 58, 128-130.                                                                                                                                          | 0.784314<br>0.8 | 4 rgBT /Ove<br>14 |
| 100 | Endocannabinoids and Kisspeptins: Two Modulators in Fight for the Regulation of GnRH Activity. , 0, , .                                                                                                                                                                                        |                 | 5                 |
| 101 | Cytoplasmic and Nuclear Fos Protein Forms Regulate Resumption of Spermatogenesis in the Frog, Rana esculenta. , 0, .                                                                                                                                                                           |                 | 22                |
| 102 | KISS1R and ANKRD31 Cooperate to Enhance Leydig Cell Gene Expression via the<br>Cytoskeletal-Nucleoskeletal Pathway. Frontiers in Cell and Developmental Biology, 0, 10, .                                                                                                                      | 1.8             | 1                 |