Lior Sepunaru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4653564/publications.pdf Version: 2024-02-01

LIOD SEDUNADU

#	Article	IF	CITATIONS
1	Conjugated Polyelectrolytes: Underexplored Materials for Pseudocapacitive Energy Storage. Advanced Materials, 2022, 34, e2104206.	11.1	25
2	Reversible electrochemical triggering and optical interrogation of polylysine α-helix formation. Bioelectrochemistry, 2022, 144, 108007.	2.4	3
3	On the Disinfection of Electrochemical Aptamer-Based Sensors. , 2022, 1, 011604.		61
4	Low Voltage Voltammetry Probes Proton Dissociation Equilibria of Amino Acids and Peptides. Analytical Chemistry, 2022, 94, 4948-4953.	3.2	2
5	Electrochemically-Driven Secondary Folding and Assembly of Peptides and Proteins. ECS Meeting Abstracts, 2022, MA2022-01, 1865-1865.	0.0	0
6	Characterization of Single Particles By Electrochemical Impedance. ECS Meeting Abstracts, 2022, MA2022-01, 2125-2125.	0.0	0
7	Membrane-Less Redox Flow Batteries: A Split Biphasic Architecture. ECS Meeting Abstracts, 2022, MA2022-01, 137-137.	0.0	0
8	Liquid-Liquid Phase Separation Effects on Electron Transfer Kinetics and Thermodynamics. ECS Meeting Abstracts, 2022, MA2022-01, 1873-1873.	0.0	0
9	Impedance Characterization of OECT Behavior in Enzyme-Embedded Conductive Polymer Matrix. ECS Meeting Abstracts, 2022, MA2022-01, 2151-2151.	0.0	0
10	(Digital Presentation) Catalytic Interruption Mitigates Edge Effects in the Characterization of Heterogeneous, Insulating Nanoparticles. ECS Meeting Abstracts, 2022, MA2022-01, 2111-2111.	0.0	0
11	A Living Biotic–Abiotic Composite that can Switch Function Between Current Generation and Electrochemical Energy Storage. Advanced Functional Materials, 2021, 31, 2007351.	7.8	20
12	What can electrochemistry tell us about individual enzymes?. Current Opinion in Electrochemistry, 2021, 25, 100643.	2.5	9
13	Electrochemical Triggering of Reflectin Protein Assembly. ECS Meeting Abstracts, 2021, MA2021-01, 2083-2083.	0.0	0
14	(Invited) Potential Applications of Nano-Electrochemistry in Point-of-Care Sensing Devices. ECS Meeting Abstracts, 2021, MA2021-01, 1336-1336.	0.0	0
15	Interconvertible Living Radical and Cationic Polymerization using a Dual Photoelectrochemical Catalyst. Journal of the American Chemical Society, 2021, 143, 12278-12285.	6.6	21
16	Detection and Characterization of Single Particles by Electrochemical Impedance Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 9748-9753.	2.1	10
17	Catalytic Interruption Mitigates Edge Effects in the Characterization of Heterogeneous, Insulating Nanoparticles. Journal of the American Chemical Society, 2021, 143, 18888-18898.	6.6	7
18	Redox-mediated carbon monoxide release from a manganese carbonyl—implications for physiological CO delivery by CO releasing moieties. Royal Society Open Science, 2021, 8, 211022.	1.1	3

LIOR SEPUNARU

#	Article	IF	CITATIONS
19	Electrodeposition of iron phosphide film for hydrogen evolution reaction. Electrochimica Acta, 2020, 363, 137167.	2.6	25
20	Nanoimpacts at Active and Partially Active Electrodes: Insights and Limitations. Angewandte Chemie - International Edition, 2020, 59, 19184-19192.	7.2	16
21	Nanoimpacts at Active and Partially Active Electrodes: Insights and Limitations. Angewandte Chemie, 2020, 132, 19346-19354.	1.6	2
22	Electrochemistry as a surrogate for protein phosphorylation: voltage-controlled assembly of reflectin A1. Journal of the Royal Society Interface, 2020, 17, 20200774.	1.5	5
23	Electrochemical Detection of Individual Catalytic and Redox-Inactive Materials. ECS Meeting Abstracts, 2020, MA2020-02, 3880-3880.	0.0	0
24	Symmetric Phthalocyanine Charge Carrier for Dual Redox Flow Battery/Capacitor Applications. ACS Applied Energy Materials, 2019, 2, 5391-5396.	2.5	15
25	Does Nitrate Reductase Play a Role in Silver Nanoparticle Synthesis? Evidence for NADPH as the Sole Reducing Agent. ACS Sustainable Chemistry and Engineering, 2019, 7, 8070-8076.	3.2	49
26	Electrochemistry of Single Enzymes: Fluctuations of Catalase Activities. Journal of Physical Chemistry Letters, 2018, 9, 2814-2817.	2.1	30
27	Reply to Comment on "Can Nanoimpacts Detect Single-Enzyme Activity? Theoretical Considerations and an Experimental Study of Catalase Impacts― ACS Catalysis, 2017, 7, 3594-3596.	5.5	7
28	Electrochemistry of single droplets of inverse (water-in-oil) emulsions. Physical Chemistry Chemical Physics, 2017, 19, 15662-15666.	1.3	43
29	Oxygen reduction in alkaline solution at glassy carbon surfaces and the role of adsorbed intermediates. Journal of Electroanalytical Chemistry, 2017, 799, 53-60.	1.9	26
30	Taking cues from nature: Hemoglobin catalysed oxygen reduction. Applied Materials Today, 2017, 7, 82-90.	2.3	24
31	Catalytic activity of catalase–silica nanoparticle hybrids: from ensemble to individual entity activity. Chemical Science, 2017, 8, 2303-2308.	3.7	26
32	Understanding single enzyme activity via the nano-impact technique. Chemical Science, 2017, 8, 6423-6432.	3.7	35
33	Catalaseâ€Modified Carbon Electrodes: Persuading Oxygen To Accept Four Electrons Rather Than Two. Chemistry - A European Journal, 2016, 22, 5904-5908.	1.7	8
34	Electrochemical Red Blood Cell Counting: One at a Time. Angewandte Chemie - International Edition, 2016, 55, 9768-9771.	7.2	66
35	Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping. Proceedings of the United States of America, 2016, 113, 10785-10790.	3.3	77
36	Electrochemical Red Blood Cell Counting: One at a Time. Angewandte Chemie, 2016, 128, 9920-9923.	1.6	20

LIOR SEPUNARU

#	Article	IF	CITATIONS
37	Can Nanoimpacts Detect Single-Enzyme Activity? Theoretical Considerations and an Experimental Study of Catalase Impacts. ACS Catalysis, 2016, 6, 8313-8320.	5.5	38
38	Towards nanometer-spaced silicon contacts to proteins. Nanotechnology, 2016, 27, 115302.	1.3	12
39	Innovative catalyst design for the oxygen reduction reaction for fuel cells. Chemical Science, 2016, 7, 3364-3369.	3.7	94
40	Rapid electrochemical detection of single influenza viruses tagged with silver nanoparticles. Chemical Science, 2016, 7, 3892-3899.	3.7	106
41	Electronic Transport via Homopeptides: The Role of Side Chains and Secondary Structure. Journal of the American Chemical Society, 2015, 137, 9617-9626.	6.6	101
42	Electrochemical detection of single E. coli bacteria labeled with silver nanoparticles. Biomaterials Science, 2015, 3, 816-820.	2.6	102
43	Electron Transfer Proteins as Electronic Conductors: Significance of the Metal and Its Binding Site in the Blue Cu Protein, Azurin. Advanced Science, 2015, 2, 1400026.	5.6	39
44	Insights into Solid-State Electron Transport through Proteins from Inelastic Tunneling Spectroscopy: The Case of Azurin. ACS Nano, 2015, 9, 9955-9963.	7.3	54
45	Electronic Transport via Proteins. Advanced Materials, 2014, 26, 7142-7161.	11.1	175
46	Temperature and Force Dependence of Nanoscale Electron Transport <i>via</i> the Cu Protein Azurin. ACS Nano, 2012, 6, 10816-10824.	7.3	63
47	Temperature-Dependent Solid-State Electron Transport through Bacteriorhodopsin: Experimental Evidence for Multiple Transport Paths through Proteins. Journal of the American Chemical Society, 2012, 134, 4169-4176.	6.6	59
48	Solid-State Electron Transport across Azurin: From a Temperature-Independent to a Temperature-Activated Mechanism. Journal of the American Chemical Society, 2011, 133, 2421-2423.	6.6	78
49	Proteins as Electronic Materials: Electron Transport through Solid-State Protein Monolayer Junctions. Journal of the American Chemical Society, 2010, 132, 4131-4140.	6.6	156
50	Picosecond Electron Transfer from Photosynthetic Reaction Center Protein to GaAs. Nano Letters, 2009, 9, 2751-2755.	4.5	22