Junli Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4653201/publications.pdf

Version: 2024-02-01

516710 526287 27 910 16 27 citations h-index g-index papers 27 27 27 1324 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Biodegradable Natural Pectinâ€Based Flexible Multilevel Resistive Switching Memory for Transient Electronics. Small, 2019, 15, e1803970.	10.0	109
2	Effects of pectin structure and crosslinking method on the properties of crosslinked pectin nanofibers. Carbohydrate Polymers, 2017, 157, 766-774.	10.2	83
3	Polylactide nanofibers delivering doxycycline for chronic wound treatment. Materials Science and Engineering C, 2019, 104, 109745.	7. 3	75
4	Chitosanâ€based nanoparticles as a sustained protein release carrier for tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2012, 100A, 939-947.	4.0	68
5	Pectinate nanofiber mat with high absorbency and antibacterial activity: A potential superior wound dressing to alginate and chitosan nanofiber mats. Carbohydrate Polymers, 2017, 174, 591-600.	10.2	59
6	Cross-Linked Pectin Nanofibers with Enhanced Cell Adhesion. Biomacromolecules, 2018, 19, 490-498.	5.4	58
7	Fabrication and Characterization of Pectin Hydrogel Nanofiber Scaffolds for Differentiation of Mesenchymal Stem Cells into Vascular Cells. ACS Biomaterials Science and Engineering, 2019, 5, 6511-6519.	5 . 2	51
8	AgNPs-incorporated nanofiber mats: Relationship between AgNPs size/content, silver release, cytotoxicity, and antibacterial activity. Materials Science and Engineering C, 2021, 118, 111331.	7.3	48
9	Reducing the content of carrier polymer in pectin nanofibers by electrospinning at low loading followed with selective washing. Materials Science and Engineering C, 2016, 59, 885-893.	7.3	47
10	Ultraflexible, Degradable Organic Synaptic Transistors Based on Natural Polysaccharides for Neuromorphic Applications. Advanced Functional Materials, 2020, 30, 2006271.	14.9	45
11	Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. Materials Science and Engineering C, 2021, 128, 112319.	7.3	35
12	Crosslinked pectin nanofibers with well-dispersed Ag nanoparticles: Preparation and characterization. Carbohydrate Polymers, 2018, 199, 68-74.	10.2	33
13	A crosslinking strategy to make neutral polysaccharide nanofibers robust and biocompatible: With konjac glucomannan as an example. Carbohydrate Polymers, 2019, 215, 130-136.	10.2	31
14	Gelatin-crosslinked pectin nanofiber mats allowing cell infiltration. Materials Science and Engineering C, 2020, 112, 110941.	7.3	23
15	Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells. Nano Research, 2018, 11, 4293-4301.	10.4	22
16	Crosslinked starch nanofibers with high mechanical strength and excellent water resistance for biomedical applications. Biomedical Materials (Bristol), 2020, 15, 025007.	3.3	17
17	An antimicrobial peptide-immobilized nanofiber mat with superior performances than the commercial silver-containing dressing. Materials Science and Engineering C, 2021, 119, 111608.	7.3	15
18	Hyaluronic acid nanofibers crosslinked with a nontoxic reagent. Carbohydrate Polymers, 2021, 259, 117757.	10.2	15

#	Article	IF	Citations
19	Rationally designed particle preloading method to improve protein delivery performance of electrospun polyester nanofibers. International Journal of Pharmaceutics, 2016, 512, 204-212.	5.2	14
20	Amino <i>N</i> -oxide functionalized graphene quantum dots as a cathode interlayer for inverted polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 5684-5689.	5 . 5	11
21	Designed Polymer Donors to Match an Amorphous Polymer Acceptor in All-Polymer Solar Cells. ACS Applied Electronic Materials, 2020, 2, 2274-2281.	4.3	11
22	Cesium-functionalized pectin as a cathode interlayer for polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 1592-1596.	5 . 5	10
23	Self-Standing and Flexible Thermoelectric Nanofiber Mat of an n-Type Conjugated Polymer. ACS Applied Electronic Materials, 2021, 3, 3641-3647.	4.3	10
24	Cellulose nanofibers electrospun from aqueous conditions. Cellulose, 2020, 27, 8695-8708.	4.9	6
25	Crosslinked carboxymethyl starch nanofiber mats: Preparation, water resistance and exudates control ability. European Polymer Journal, 2021, 154, 110568.	5.4	5
26	Effects of preparation parameters on the properties of the crosslinked pectin nanofiber mats. Carbohydrate Polymers, 2021, 269, 118314.	10.2	5
27	Transient Electronics: Biodegradable Natural Pectinâ∈Based Flexible Multilevel Resistive Switching Memory for Transient Electronics (Small 4/2019). Small, 2019, 15, 1970025.	10.0	4