
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4653152/publications.pdf Version: 2024-02-01

YUUN-HAN LOH

#	Article	IF	CITATIONS
1	Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell, 2010, 7, 618-630.	11.1	2,368
2	Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells. Cell, 2008, 133, 1106-1117.	28.9	2,279
3	The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 2006, 38, 431-440.	21.4	2,162
4	Somatic coding mutations in human induced pluripotent stem cells. Nature, 2011, 471, 63-67.	27.8	1,147
5	Transcriptional Regulation of Nanog by OCT4 and SOX2. Journal of Biological Chemistry, 2005, 280, 24731-24737.	3.4	942
6	Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 2010, 42, 1113-1117.	21.4	902
7	A core Klf circuitry regulates self-renewal of embryonic stem cells. Nature Cell Biology, 2008, 10, 353-360.	10.3	678
8	Reciprocal Transcriptional Regulation of Pou5f1 and Sox2 via the Oct4/Sox2 Complex in Embryonic Stem Cells. Molecular and Cellular Biology, 2005, 25, 6031-6046.	2.3	599
9	Generation of induced pluripotent stem cells from human blood. Blood, 2009, 113, 5476-5479.	1.4	559
10	Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nature Biotechnology, 2011, 29, 1117-1119.	17.5	547
11	Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes and Development, 2007, 21, 2545-2557.	5.9	447
12	Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nature Biotechnology, 2009, 27, 1033-1037.	17.5	445
13	Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nature Cell Biology, 2009, 11, 197-203.	10.3	428
14	Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature, 2010, 464, 292-296.	27.8	302
15	Reprogramming of T Cells from Human Peripheral Blood. Cell Stem Cell, 2010, 7, 15-19.	11.1	288
16	LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. Cell Stem Cell, 2016, 19, 66-80.	11.1	278
17	Sall4 Interacts with Nanog and Co-occupies Nanog Genomic Sites in Embryonic Stem Cells. Journal of Biological Chemistry, 2006, 281, 24090-24094.	3.4	253
18	Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes and Development, 2009, 23, 2507-2520.	5.9	218

#	Article	IF	CITATIONS
19	Systematic Identification of Factors for Provirus Silencing in Embryonic Stem Cells. Cell, 2015, 163, 230-245.	28.9	162
20	Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nature Methods, 2016, 13, 833-836.	19.0	158
21	Zic3 Is Required for Maintenance of Pluripotency in Embryonic Stem Cells. Molecular Biology of the Cell, 2007, 18, 1348-1358.	2.1	121
22	Telomerase reverse transcriptase promotes cancer cell proliferation by augmenting tRNA expression. Journal of Clinical Investigation, 2016, 126, 4045-4060.	8.2	109
23	Transposable elements are regulated by context-specific patterns of chromatin marks in mouse embryonic stem cells. Nature Communications, 2019, 10, 34.	12.8	104
24	Alternative Splicing of MBD2 Supports Self-Renewal in Human Pluripotent Stem Cells. Cell Stem Cell, 2014, 15, 92-101.	11.1	93
25	Accessing naÃ⁻ve human pluripotency. Current Opinion in Genetics and Development, 2012, 22, 272-282.	3.3	92
26	Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates. Cardiovascular Research, 2012, 96, 391-400.	3.8	77
27	Molecular framework underlying pluripotency. Cell Cycle, 2008, 7, 885-891.	2.6	55
28	Parallel bimodal single-cell sequencing of transcriptome and chromatin accessibility. Genome Research, 2020, 30, 1027-1039.	5.5	52
29	Global H3.3 dynamic deposition defines its bimodal role in cell fate transition. Nature Communications, 2018, 9, 1537.	12.8	49
30	Multi-species single-cell transcriptomic analysis of ocular compartment regulons. Nature Communications, 2021, 12, 5675.	12.8	48
31	RNAi Reveals Phase-Specific Global Regulators of Human Somatic Cell Reprogramming. Cell Reports, 2016, 15, 2597-2607.	6.4	47
32	Human Finger-Prick Induced Pluripotent Stem Cells Facilitate the Development of Stem Cell Banking. Stem Cells Translational Medicine, 2014, 3, 586-598.	3.3	41
33	Euchromatin islands in large heterochromatin domains are enriched for CTCF binding and differentially DNA-methylated regions. BMC Genomics, 2012, 13, 566.	2.8	40
34	PRDM15 safeguards naive pluripotency by transcriptionally regulating WNT and MAPK–ERK signaling. Nature Genetics, 2017, 49, 1354-1363.	21.4	39
35	Diversification of reprogramming trajectories revealed by parallel single-cell transcriptome and chromatin accessibility sequencing. Science Advances, 2020, 6, .	10.3	37
36	Gene Networks of Fully Connected Triads with Complete Auto-Activation Enable Multistability and Stepwise Stochastic Transitions. PLoS ONE, 2014, 9, e102873.	2.5	35

#	Article	IF	CITATIONS
37	Genomic Approaches to Deconstruct Pluripotency. Annual Review of Genomics and Human Genetics, 2011, 12, 165-185.	6.2	33
38	RING1B O-GlcNAcylation regulates gene targeting of polycomb repressive complex 1 in human embryonic stem cells. Stem Cell Research, 2015, 15, 182-189.	0.7	28
39	Review: In vitro generation of red blood cells for transfusion medicine: Progress, prospects and challenges. Biotechnology Advances, 2018, 36, 2118-2128.	11.7	28
40	Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors. Nature Communications, 2016, 7, 13396.	12.8	22
41	Zfp322a Regulates Mouse ES Cell Pluripotency and Enhances Reprogramming Efficiency. PLoS Genetics, 2014, 10, e1004038.	3.5	21
42	Transcriptional and epigenetic regulations of embryonic stem cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 647, 52-58.	1.0	20
43	Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges. International Journal of Molecular Sciences, 2015, 16, 28614-28634.	4.1	19
44	Unraveling Heterogeneity in Transcriptome and Its Regulation Through Single-Cell Multi-Omics Technologies. Frontiers in Genetics, 2020, 11, 662.	2.3	18
45	Ascorbate and Iron Are Required for the Specification and Long-Term Self-Renewal of Human Skeletal Mesenchymal Stromal Cells. Stem Cell Reports, 2020, 14, 210-225.	4.8	17
46	Excision of a Viral Reprogramming Cassette by Delivery of Synthetic Cre mRNA. Current Protocols in Stem Cell Biology, 2012, 21, Unit4A.5.	3.0	17
47	Cops2 promotes pluripotency maintenance by Stabilizing Nanog Protein and Repressing Transcription. Scientific Reports, 2016, 6, 26804.	3.3	16
48	Superior Red Blood Cell Generation from Human Pluripotent Stem Cells Through a Novel Microcarrier-Based Embryoid Body Platform. Tissue Engineering - Part C: Methods, 2016, 22, 765-780.	2.1	14
49	Regulation of ERVs in pluripotent stem cells and reprogramming. Current Opinion in Genetics and Development, 2017, 46, 194-201.	3.3	13
50	Defined Serumâ€Free Medium for Bioreactor Culture of an Immortalized Human Erythroblast Cell Line. Biotechnology Journal, 2018, 13, e1700567.	3.5	13
51	Cellular Reprogramming: A New Technology Frontier in Pharmaceutical Research. Pharmaceutical Research, 2012, 29, 35-52.	3.5	10
52	Improved erythroid differentiation of multiple human pluripotent stem cell lines in microcarrier culture by modulation of Wnt/ \hat{l}^2 -Catenin signaling. Haematologica, 2018, 103, e279-e283.	3.5	9
53	SETDB1 acts as a topological accessory to Cohesin via an H3K9me3-independent, genomic shunt for regulating cell fates. Nucleic Acids Research, 2022, 50, 7326-7349.	14.5	8
54	Defining Essential Enhancers for Pluripotent Stem Cells Using a Features-Oriented CRISPR-Cas9 Screen. Cell Reports, 2020, 33, 108309.	6.4	6

#	Article	IF	CITATIONS
55	Reproductive medicine gets a new tool. Journal of Molecular Cell Biology, 2011, 3, 320-321.	3.3	5
56	Chromatin Regulation in Development: Current Understanding and Approaches. Stem Cells International, 2021, 2021, 1-12.	2.5	5
57	Derivation of Transgene-Free Induced Pluripotent Stem Cells from a Single Drop of Blood. , 2016, 38, 4A.9.1-4A.9.10.		4
58	Novel live cell fluorescent probe for human-induced pluripotent stem cells highlights early reprogramming population. Stem Cell Research and Therapy, 2021, 12, 113.	5.5	4
59	Reâ€entering the pluripotent state from blood lineage: promises and pitfalls of blood reprogramming. FEBS Letters, 2019, 593, 3244-3252.	2.8	2
60	Telomere Elongation in Dyskeratosis Congenita Induced Pluripotent Stem Cells Blood, 2009, 114, 497-497.	1.4	1
61	H3.3 safeguards haematopoietic ERV-quilibrium. Nature Cell Biology, 2022, 24, 7-9.	10.3	Ο