Suryaprakash Sambhara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4653111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Persistence of Memory CD8 T Cells in MHC Class I-Deficient Mice. Science, 1999, 286, 1377-1381.	12.6	659
2	Cutting Edge: Impaired Toll-Like Receptor Expression and Function in Aging. Journal of Immunology, 2002, 169, 4697-4701.	0.8	549
3	Innate immunity in aging: impact on macrophage function. Aging Cell, 2004, 3, 161-167.	6.7	380
4	Role of Host Cytokine Responses in the Pathogenesis of Avian H5N1 Influenza Viruses in Mice. Journal of Virology, 2007, 81, 2736-2744.	3.4	369
5	NLRX1 Protein Attenuates Inflammatory Responses to Infection by Interfering with the RIG-I-MAVS and TRAF6-NF-ήB Signaling Pathways. Immunity, 2011, 34, 854-865.	14.3	323
6	Critical Role of an Antiviral Stress Granule Containing RIG-I and PKR in Viral Detection and Innate Immunity. PLoS ONE, 2012, 7, e43031.	2.5	294
7	NS1 Protein of Influenza A Virus Inhibits the Function of Intracytoplasmic Pathogen Sensor, RIG-I. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 263-269.	2.9	258
8	Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes. Science, 2021, 372, 1108-1112.	12.6	210
9	Development of adenoviral-vector-based pandemic influenza vaccine against antigenically distinct human H5N1 strains in mice. Lancet, The, 2006, 367, 475-481.	13.7	179
10	Challenges for vaccination in the elderly. Immunity and Ageing, 2007, 4, 9.	4.2	173
11	DNA Vaccine Expressing Conserved Influenza Virus Proteins Protective Against H5N1 Challenge Infection in Mice. Emerging Infectious Diseases, 2002, 8, 796-801.	4.3	153
12	Heterosubtypic Immunity against Human Influenza A Viruses, Including Recently Emerged Avian H5 and H9 Viruses, Induced by FLU–ISCOM Vaccine in Mice Requires both Cytotoxic T-Lymphocyte and Macrophage Function. Cellular Immunology, 2001, 211, 143-153.	3.0	121
13	Cytokine and Chemokine Profiles in Lung Tissues from Fatal Cases of 2009 Pandemic Influenza A (H1N1). American Journal of Pathology, 2013, 183, 1258-1268.	3.8	119
14	Protection against Respiratory Syncytial Virus Infection by DNA Immunization. Journal of Experimental Medicine, 1998, 188, 681-688.	8.5	114
15	Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Scientific Reports, 2017, 7, 40360.	3.3	110
16	Protein Energy Malnutrition Decreases Immunity and Increases Susceptibility to Influenza Infection in Mice. Journal of Infectious Diseases, 2013, 207, 501-510.	4.0	103
17	Gold nanorod delivery of an ssRNA immune activator inhibits pandemic H1N1 influenza viral replication. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10172-10177.	7.1	98
18	Early Control of H5N1 Influenza Virus Replication by the Type I Interferon Response in Mice. Journal of Virology, 2009, 83, 5825-5834.	3.4	93

#	Article	IF	CITATIONS
19	Cytotoxic T Lymphocyte Reactivity to gp100, MelanA/MART-1, and Tyrosinase, in HLA-A2-Positive Vitiligo Patients. Journal of Investigative Dermatology, 2003, 121, 550-556.	0.7	90
20	Immunosenescence and Influenza Vaccine Efficacy. Current Topics in Microbiology and Immunology, 2009, 333, 413-429.	1.1	83
21	Impaired antigen-induced CD8+ T cell clonal expansion in aging is due to defects in antigen presenting cell function. Cellular Immunology, 2004, 229, 86-92.	3.0	81
22	Strategies to alleviate original antigenic sin responses to influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13751-13756.	7.1	81
23	Influenza A virus nucleoprotein induces apoptosis in human airway epithelial cells: implications of a novel interaction between nucleoprotein and host protein Clusterin. Cell Death and Disease, 2013, 4, e562-e562.	6.3	78
24	Immunity to Influenza: The Challenges of Protecting an Aging Population. Immunologic Research, 2004, 29, 113-124.	2.9	77
25	SARS oVâ€2 RBD Neutralizing Antibody Induction is Enhanced by Particulate Vaccination. Advanced Materials, 2020, 32, e2005637.	21.0	74
26	Activation of the RIG-I Pathway during Influenza Vaccination Enhances the Germinal Center Reaction, Promotes T Follicular Helper Cell Induction, and Provides a Dose-Sparing Effect and Protective Immunity. Journal of Virology, 2014, 88, 13990-14001.	3.4	70
27	Comparative Immunogenicity of Several Enhanced Influenza Vaccine Options for Older Adults: A Randomized, Controlled Trial. Clinical Infectious Diseases, 2020, 71, 1704-1714.	5.8	67
28	Increased MDSC Accumulation and Th2 Biased Response to Influenza A Virus Infection in the Absence of TLR7 in Mice. PLoS ONE, 2011, 6, e25242.	2.5	65
29	Impact of Preexisting Adenovirus Vector Immunity on Immunogenicity and Protection Conferred with an Adenovirus-Based H5N1 Influenza Vaccine. PLoS ONE, 2012, 7, e33428.	2.5	65
30	Influenza A Virus Nucleoprotein Exploits Hsp40 to Inhibit PKR Activation. PLoS ONE, 2011, 6, e20215.	2.5	64
31	Cytoplasmic nucleic acid sensors in antiviral immunity. Trends in Molecular Medicine, 2009, 15, 359-368.	6.7	59
32	A Broadly Protective Vaccine against Globally Dispersed Clade 1 and Clade 2 H5N1 Influenza Viruses. Journal of Infectious Diseases, 2008, 197, 1185-1188.	4.0	58
33	TLR7 Recognition Is Dispensable for Influenza Virus A Infection but Important for the Induction of Hemagglutinin-Specific Antibodies in Response to the 2009 Pandemic Split Vaccine in Mice. Journal of Virology, 2012, 86, 10988-10998.	3.4	58
34	Immunosenescence and Challenges of Vaccination against Influenza in the Aging Population. , 2012, 3, 68-90.		58
35	Monkeypox Virus Host Factor Screen Using Haploid Cells Identifies Essential Role of GARP Complex in Extracellular Virus Formation. Journal of Virology, 2017, 91, .	3.4	54
36	Egg-independent vaccine strategies for highly pathogenic H5N1 influenza viruses. Hum Vaccin, 2010, 6, 178-188.	2.4	52

#	Article	IF	CITATIONS
37	Rapid Differentiation of Monocytes into Type I IFN-Producing Myeloid Dendritic Cells as an Antiviral Strategy against Influenza Virus Infection. Journal of Immunology, 2012, 189, 2257-2265.	0.8	52
38	NLRC5 interacts with RIGâ€I to induce a robust antiviral response against influenza virus infection. European Journal of Immunology, 2015, 45, 758-772.	2.9	49
39	Human Heat shock protein 40 (Hsp40/DnaJB1) promotes influenza A virus replication by assisting nuclear import of viral ribonucleoproteins. Scientific Reports, 2016, 6, 19063.	3.3	48
40	17β-Estradiol restores antibody responses to an influenza vaccine in a postmenopausal mouse model. Vaccine, 2011, 29, 2515-2518.	3.8	46
41	Heterotypic Protection against Influenza by Immunostimulating Complexes Is Associated with the Induction of Crossâ€Reactive Cytotoxic T Lymphocytes. Journal of Infectious Diseases, 1998, 177, 1266-1274.	4.0	44
42	RIG-I activation inhibits ebolavirus replication. Virology, 2009, 392, 11-15.	2.4	42
43	Broadly Protective Adenovirus-Based Multivalent Vaccines against Highly Pathogenic Avian Influenza Viruses for Pandemic Preparedness. PLoS ONE, 2013, 8, e62496.	2.5	41
44	Vaccine approaches conferring cross-protection against influenza viruses. Expert Review of Vaccines, 2017, 16, 1141-1154.	4.4	41
45	New Pre-pandemic Influenza Vaccines: An Egg- and Adjuvant-independent Human Adenoviral Vector Strategy Induces Long-lasting Protective Immune Responses in Mice. Clinical Pharmacology and Therapeutics, 2007, 82, 665-671.	4.7	40
46	Adenoviral Vector-Based Vaccine Platforms for Developing the Next Generation of Influenza Vaccines. Vaccines, 2020, 8, 574.	4.4	40
47	Needle-Free Skin Patch Delivery of a Vaccine for a Potentially Pandemic Influenza Virus Provides Protection against Lethal Challenge in Mice. Vaccine Journal, 2007, 14, 926-928.	3.1	39
48	The 3′ Untranslated Regions of Influenza Genomic Sequences Are 5′PPP-Independent Ligands for RIG-I. PLoS ONE, 2012, 7, e32661.	2.5	39
49	H5N1 Avian Influenza: Preventive and Therapeutic Strategies Against a Pandemic. Annual Review of Medicine, 2010, 61, 187-198.	12.2	38
50	Influenza A viral nucleoprotein interacts with cytoskeleton scaffolding protein αâ€actininâ€4 for viral replication. FEBS Journal, 2014, 281, 2899-2914.	4.7	38
51	Preexisting Immunity, More Than Aging, Influences Influenza Vaccine Responses. Open Forum Infectious Diseases, 2015, 2, ofv052.	0.9	37
52	Severe Impairment of Primary but Not Memory Responses to Influenza Viral Antigens in Aged Mice: Costimulation in Vivo Partially Reverses Impaired Primary Immune Responses. Cellular Immunology, 2001, 210, 1-4.	3.0	36
53	Enhanced Antibody and Cytokine Responses to Influenza Viral Antigens in Perforin-Deficient Mice. Cellular Immunology, 1998, 187, 13-18.	3.0	33
54	Prior infection with influenza virus but not vaccination leaves a long-term immunological imprint that intensifies the protective efficacy of antigenically drifted vaccine strains. Vaccine, 2016, 34, 495-502.	3.8	31

#	Article	IF	CITATIONS
55	A Distal Regulatory Region Is Required for Constitutive and IFN-Î ² -Induced Expression of MurineTLR9Gene. Journal of Immunology, 2005, 175, 7407-7418.	0.8	29
56	Vaccines against epidemic and pandemic influenza. Expert Opinion on Drug Delivery, 2008, 5, 1139-1157.	5.0	29
57	Influenza A Virus Neuraminidase Protein Enhances Cell Survival through Interaction with Carcinoembryonic Antigen-related Cell Adhesion Molecule 6 (CEACAM6) Protein. Journal of Biological Chemistry, 2012, 287, 15109-15117.	3.4	29
58	5'PPP-RNA induced RIG-I activation inhibits drug-resistant avian H5N1 as well as 1918 and 2009 pandemic influenza virus replication. Virology Journal, 2010, 7, 102.	3.4	27
59	Improving immunogenicity and effectiveness of influenza vaccine in older adults. Expert Review of Vaccines, 2011, 10, 1529-1537.	4.4	27
60	Significant Impact of Sequence Variations in the Nucleoprotein on CD8 T Cell-Mediated Cross-Protection against Influenza A Virus Infections. PLoS ONE, 2010, 5, e10583.	2.5	25
61	Beta-defensin 2 enhances immunogenicity and protection of an adenovirus-based H5N1 influenza vaccine at an early time. Virus Research, 2013, 178, 398-403.	2.2	24
62	Immunogenicity of standard, high-dose, MF59-adjuvanted, and recombinant-HA seasonal influenza vaccination in older adults. Npj Vaccines, 2021, 6, 25.	6.0	23
63	Non-neutralizing antibodies induced by seasonal influenza vaccine prevent, not exacerbate A(H1N1)pdm09 disease. Scientific Reports, 2016, 6, 37341.	3.3	22
64	Avian influenza vaccines: what's all the flap?. Lancet, The, 2006, 367, 1636-1638.	13.7	20
65	An ELISA-based method for detection of rabies virus nucleoprotein-specific antibodies in human antemortem samples. PLoS ONE, 2018, 13, e0207009.	2.5	20
66	Kinetics of antibody response to influenza vaccination in renal transplant recipients. Transplant Immunology, 2019, 53, 51-60.	1.2	20
67	Enhanced immune responses and resistance against infection in aged mice conferred by Flu-ISCOMs vaccine correlate with up-regulation of costimulatory molecule CD86. Vaccine, 1998, 16, 1698-1704.	3.8	19
68	High-dose influenza vaccine favors acute plasmablast responses rather than long-term cellular responses. Vaccine, 2016, 34, 4594-4601.	3.8	19
69	Comparison of the Immunogenicity of Cell Culture-Based and Recombinant Quadrivalent Influenza Vaccines to Conventional Egg-Based Quadrivalent Influenza Vaccines Among Healthcare Personnel Aged 18–64 Years: A Randomized Open-Label Trial. Clinical Infectious Diseases, 2021, 73, 1973-1981.	5.8	18
70	Influence of pre-existing hemagglutination inhibition titers against historical influenza strains on antibody response to inactivated trivalent influenza vaccine in adults 50–80 years of age. Human Vaccines and Immunotherapeutics, 2014, 10, 1195-1203.	3.3	17
71	NADPH Oxidase 1 Is Associated with Altered Host Survival and T Cell Phenotypes after Influenza A Virus Infection in Mice. PLoS ONE, 2016, 11, e0149864.	2.5	17
72	Conserved Oligomeric Golgi (COG) Complex Proteins Facilitate Orthopoxvirus Entry, Fusion and Spread. Viruses, 2020, 12, 707.	3.3	16

#	Article	IF	CITATIONS
73	Seasonal Influenza Vaccination of Children Induces Humoral and Cell-Mediated Immunity Beyond the Current Season: Cross-reactivity With Past and Future Strains. Journal of Infectious Diseases, 2016, 214, 1477-1486.	4.0	15
74	Longevity of adenovirus vector immunity in mice and its implications for vaccine efficacy. Vaccine, 2018, 36, 6744-6751.	3.8	15
75	A liposome-displayed hemagglutinin vaccine platform protects mice and ferrets from heterologous influenza virus challenge. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
76	Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses. PLoS ONE, 2017, 12, e0186244.	2.5	15
77	Influenza (H1N1)–ISCOMs enhance immune responses and protection in aged mice. Mechanisms of Ageing and Development, 1997, 96, 157-169.	4.6	14
78	Vaccines against Influenza A (H5N1): Evidence of Progress. Journal of Infectious Diseases, 2008, 198, 629-631.	4.0	14
79	A Bovine Adenoviral Vector-Based H5N1 Influenza -Vaccine Provides Enhanced Immunogenicity and Protection at a Significantly Low Dose. Molecular Therapy - Methods and Clinical Development, 2018, 10, 210-222.	4.1	14
80	Inactivated Influenza Vaccines. , 2018, , 456-488.e21.		14
81	Adenoviral vectorâ€based platforms for developing effective vaccines to combat respiratory viral infections. Clinical and Translational Immunology, 2021, 10, e1345.	3.8	14
82	The innate immune system: a repository for future drugs?. Expert Review of Anti-Infective Therapy, 2007, 5, 1-5.	4.4	13
83	Antiviral defense: RIG-Ing the immune system to STING. Cytokine and Growth Factor Reviews, 2009, 20, 1-5.	7.2	13
84	An oil-in-water nanoemulsion enhances immunogenicity of H5N1 vaccine in mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1909-1917.	3.3	12
85	A highly immunogenic vaccine against A/H7N9 influenza virus. Vaccine, 2016, 34, 744-749.	3.8	12
86	Age, serum 25-hydroxyvitamin D and vitamin D receptor (VDR) expression and function in peripheral blood mononuclear cells. Oncotarget, 2016, 7, 35512-35521.	1.8	12
87	Discovery of Retro-1 Analogs Exhibiting Enhanced Anti-vaccinia Virus Activity. Frontiers in Microbiology, 2020, 11, 603.	3.5	11
88	Critical role of RIG-I and MDA5 in early and late stages of Tulane virus infection. Journal of General Virology, 2017, 98, 1016-1026.	2.9	11
89	Nasal delivery of H5N1 avian influenza vaccine formulated with GenJetâ"¢ or in vivo-jetPEI [®] induces enhanced serological, cellular and protective immune responses. Drug Delivery, 2018, 25, 773-779.	5.7	10
90	Innate lymphoid cells (ILC) in SARS-CoV-2 infection. Molecular Aspects of Medicine, 2021, 80, 101008.	6.4	10

#	Article	IF	CITATIONS
91	Breaking the immunogenicity barrier of bird flu vaccines. Lancet, The, 2007, 370, 544-545.	13.7	8
92	Moving influenza vaccines forward. Expert Review of Vaccines, 2009, 8, 375-377.	4.4	8
93	PAMPer and tRIGer: ligand-induced activation of RIG-I. Trends in Biochemical Sciences, 2011, 36, 314-319.	7.5	8
94	Adenoviral vector expressing murine β-defensin 2 enhances immunogenicity of an adenoviral vector based H5N1 influenza vaccine in aged mice. Virus Research, 2013, 177, 55-61.	2.2	8
95	Cell-Mediated Immunity Against Antigenically Drifted Influenza A(H3N2) Viruses in Children During a Vaccine Mismatch Season. Journal of Infectious Diseases, 2016, 214, 1030-1038.	4.0	8
96	Nasal delivery of Protollin-adjuvanted H5N1 vaccine induces enhanced systemic as well as mucosal immunity in mice. Vaccine, 2017, 35, 3318-3325.	3.8	8
97	Influenza A Virus Nucleoprotein Activates the JNK Stress-Signaling Pathway for Viral Replication by Sequestering Host Filamin A Protein. Frontiers in Microbiology, 2020, 11, 581867.	3.5	8
98	Infection of Lung Epithelial Cells with Pandemic 2009 A(H1N1) Influenza Viruses Reveals Isolate-Specific Differences in Infectivity and Host Cellular Responses. Viral Immunology, 2011, 24, 89-99.	1.3	7
99	Influenza virus NS1- C/EBPÎ ² gene regulatory complex inhibits RIG-I transcription. Antiviral Research, 2020, 176, 104747.	4.1	7
100	Prospective cohort study of influenza vaccine effectiveness among healthcare personnel in Lima, Peru: Estudio Vacuna de Influenza Peru, 2016â€2018. Influenza and Other Respiratory Viruses, 2020, 14, 391-402.	3.4	7
101	Influenza Virus Infects and Depletes Activated Adaptive Immune Responders. Advanced Science, 2021, 8, e2100693.	11.2	7
102	Patients Hospitalized with pH1N1 Influenza in an Academic Community Medical Center. Open Respiratory Medicine Journal, 2011, 5, 19-23.	0.4	7
103	Improving influenza vaccines. Expert Review of Vaccines, 2012, 11, 871-872.	4.4	6
104	RIG-I Goes Beyond Naked Recognition. Cell Host and Microbe, 2013, 13, 247-249.	11.0	6
105	RIG-I ligand enhances the immunogenicity of recombinant H7HA protein. Cellular Immunology, 2016, 304-305, 55-58.	3.0	6
106	Standard-Dose Intradermal Influenza Vaccine Elicits Cellular Immune Responses Similar to Those of Intramuscular Vaccine in Men With and Those Without HIV Infection. Journal of Infectious Diseases, 2019, 220, 743-751.	4.0	6
107	Impact of diabetes status on immunogenicity of trivalent inactivated influenza vaccine in older adults. Influenza and Other Respiratory Viruses, 2022, 16, 562-567.	3.4	6
108	H5N1 vaccine hits the target, but not the bull's eye. Lancet Infectious Diseases, The, 2007, 7, 503-505.	9.1	5

#	Article	IF	CITATIONS
109	A Newly Emerged Swine-Origin Influenza A(H3N2) Variant Dampens Host Antiviral Immunity but Induces Potent Inflammasome Activation. Journal of Infectious Diseases, 2015, 212, 1923-1929.	4.0	5
110	Rapamycin Does Not Impede Survival or Induction of Antibody Responses to Primary and Heterosubtypic Influenza Infections in Mice. Viral Immunology, 2016, 29, 487-493.	1.3	4
111	Heterogeneous Ribonucleoprotein A1 (hnRNPA1) Interacts with the Nucleoprotein of the Influenza a Virus and Impedes Virus Replication. Viruses, 2022, 14, 199.	3.3	4
112	A Dual-Functioning 5Ê1-PPP-NS1shRNA that Activates a RIG-I Antiviral Pathway and Suppresses Influenza NS1. Molecular Therapy - Nucleic Acids, 2020, 19, 1413-1422.	5.1	3
113	Dependence of mouse thymocyte-erythrocyte rosette formation on complete identity at class-l-MHC. Journal of Cellular Physiology, 1991, 148, 485-492.	4.1	2
114	An Adjuvanted A(H5N1) Subvirion Vaccine Elicits Virus-Specific Antibody Response and Improves Protection Against Lethal Influenza Viral Challenge in Mouse Model of Protein Energy Malnutrition. Journal of Infectious Diseases, 2017, 216, S560-S565.	4.0	2
115	Increased Dietary Salt Intake Does Not Influence Influenza A Virus–Induced Disease Severity in Mice. Viral Immunology, 2015, 28, 532-537.	1.3	1

Vaccines: SARSâ \in CoVâ \in 2 RBD Neutralizing Antibody Induction is Enhanced by Particulate Vaccination (Adv.) Tj ETQq0.0 0 rgBT /Overload 21.00 Vaccination (Adv.) Tj ETQq0.0 Vaccination (Adv.) Tj ETQq0.0 0 rgBT /Overload 21.00 Vaccination (Adv.) Tj ETQq0.0 0 rgBT /Overload 21.00 Vaccination (Adv.) Tj ETQq0.0 0 rgBT /Overload 21.00 Vaccination (Adv.) Tj ETQq0.0 V

117	Quinazolin-derived myeloperoxidase inhibitor suppresses influenza A virus-induced reactive oxygen species, pro-inflammatory mediators and improves cell survival. PLoS ONE, 2021, 16, e0254632.	2.5	1
118	Human innate lymphoid cells in influenza infection and vaccination. Critical Reviews in Immunology, 2021, 41, 57-82.	0.5	1
119	Nox1 as a Therapeutic Target to Improve Survival in Influenza a Infection. Free Radical Biology and Medicine, 2013, 65, S125-S126.	2.9	0
120	Age and Vitamin D Receptor (VDR) Expression and Functionality in Peripheral Blood Mononuclear Cells (PBMC). FASEB Journal, 2013, 27, lb252.	0.5	0