MarÃ-a A Pajares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4652816/publications.pdf

Version: 2024-02-01

88 3,219 30 49
papers citations h-index g-index

95 95 95 2715 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cell surface detection of vimentin, ACE2 and SARS-CoV-2 Spike proteins reveals selective colocalization at primary cilia. Scientific Reports, 2022, 12, 7063.	3.3	16
2	The cellular vimentin network undergoes distinct reorganizations in response to diverse electrophiles or mutations of its single cysteine residue. Free Radical Biology and Medicine, 2021, 165, 26.	2.9	0
3	Molecular Insight into the Regulation of Vimentin by Cysteine Modifications and Zinc Binding. Antioxidants, 2021, 10, 1039.	5.1	10
4	Amoxicillin Haptenation of \hat{l}_{\pm} -Enolase is Modulated by Active Site Occupancy and Acetylation. Frontiers in Pharmacology, 2021, 12, 807742.	3.5	1
5	Polar Interactions at the Dimer–Dimer Interface of Methionine Adenosyltransferase MAT I Control Tetramerization. International Journal of Molecular Sciences, 2021, 22, 13206.	4.1	1
6	Type III intermediate filaments as targets and effectors of electrophiles and oxidants. Redox Biology, 2020, 36, 101582.	9.0	35
7	Folic acid as preventive therapy for hearing loss: effect of ototoxic drug consumption. Proceedings of the Nutrition Society, 2020, 79, .	1.0	O
8	Amoxicillin Inactivation by Thiol-Catalyzed Cyclization Reduces Protein Haptenation and Antibacterial Potency. Frontiers in Pharmacology, 2020, $11,189.$	3. 5	13
9	Protein-protein interactions involving enzymes of the mammalian methionine and homocysteine metabolism. Biochimie, 2020, 173, 33-47.	2.6	25
10	Vimentin filaments interact with the actin cortex in mitosis allowing normal cell division. Nature Communications, 2019, 10, 4200.	12.8	83
11	Vimentin disruption by lipoxidation and electrophiles: Role of the cysteine residue and filament dynamics. Redox Biology, 2019, 23, 101098.	9.0	42
12	Integrated approaches to unravel the impact of protein lipoxidation on macromolecular interactions. Free Radical Biology and Medicine, 2019, 144, 203-217.	2.9	7
13	Betaineâ€homocysteine <i>S</i> â€methyltransferase deficiency causes increased susceptibility to noiseâ€induced hearing loss associated with plasma hyperhomocysteinemia. FASEB Journal, 2019, 33, 5942-5956.	0.5	7
14	Interplay between Nutrition and Hearing Loss: State of Art. Nutrients, 2019, 11, 35.	4.1	83
15	Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxidants and Redox Signaling, 2018, 29, 408-452.	5.4	26
16	Alterations in Nucleocytoplasmic Localization of the Methionine Cycle Induced by Oxidative Stress During Liver Disease., 2018,, 21-41.		0
17	Asthma and allergic rhinitis associate with the <i>rs2229542</i> variant that induces a p.Lys90Glu mutation and compromises AKR1B1 protein levels. Human Mutation, 2018, 39, 1081-1091.	2.5	4
18	Identification of hepatic protein-protein interaction targets for betaine homocysteine S-methyltransferase. PLoS ONE, 2018, 13, e0199472.	2.5	4

#	Article	IF	CITATIONS
19	Betaine homocysteine S-methyltransferase emerges as a new player of the nuclear methionine cycle. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1165-1182.	4.1	33
20	The interplay between nuclear and cytoplasmic distribution of methionine cycle enzymes in acute liver injury. Free Radical Biology and Medicine, 2017, 108, S83.	2.9	0
21	Cochlear Homocysteine Metabolism at the Crossroad of Nutrition and Sensorineural Hearing Loss. Frontiers in Molecular Neuroscience, 2017, 10, 107.	2.9	29
22	<i>PDRG1</i> at the interface between intermediary metabolism and oncogenesis. World Journal of Biological Chemistry, 2017, 8, 175-186.	4.3	7
23	The Oncogene PDRG1 Is an Interaction Target of Methionine Adenosyltransferases. PLoS ONE, 2016, 11, e0161672.	2.5	15
24	Long-Term Dietary Folate Deficiency Accelerates Progressive Hearing Loss on CBA/Ca Mice. Frontiers in Aging Neuroscience, 2016, 8, 209.	3.4	12
25	Detoxifying Enzymes at the Cross-Roads of Inflammation, Oxidative Stress, and Drug Hypersensitivity: Role of Glutathione Transferase P1-1 and Aldose Reductase. Frontiers in Pharmacology, 2016, 7, 237.	3.5	31
26	Long-term omega-3 fatty acid supplementation prevents expression changes in cochlear homocysteine metabolism and ameliorates progressive hearing loss in C57BL/6J mice. Journal of Nutritional Biochemistry, 2015, 26, 1424-1433.	4.2	29
27	Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism. FASEB Journal, 2015, 29, 418-432.	0.5	49
28	Acute Liver Injury Induces Nucleocytoplasmic Redistribution of Hepatic Methionine Metabolism Enzymes. Antioxidants and Redox Signaling, 2014, 20, 2541-2554.	5.4	15
29	How are mammalian methionine adenosyltransferases regulated in the liver? A focus on redox stress. FEBS Letters, 2013, 587, 1711-1716.	2.8	18
30	Structural Studies of Betaine Homocysteine Methyl Transferase (BHMT) and a Dimeric Mutant by Conventional and 2DCOS Moving Lapse IR Spectroscopy. Biophysical Journal, 2013, 104, 73a.	0.5	4
31	Modulation of GSTP1-1 Oligomerization by Electrophilic Inflammatory Mediators and Reactive Drugs. Inflammation and Allergy: Drug Targets, 2013, 12, 162-171.	1.8	11
32	Interactions of electrophilic lipids and reactive drugs with enzymes involved in cancer chemoresistance. Free Radical Biology and Medicine, 2012, 53, S255-S256.	2.9	0
33	NADP+ Binding to the Regulatory Subunit of Methionine Adenosyltransferase II Increases Intersubunit Binding Affinity in the Hetero-Trimer. PLoS ONE, 2012, 7, e50329.	2.5	17
34	Structural basis for the stability of a thermophilic methionine adenosyltransferase against guanidinium chloride. Amino Acids, 2012, 42, 361-373.	2.7	3
35	Methionine Adenosyltransferase (<i>S</i> â€Adenosylmethionine Synthetase). Advances in Enzymology and Related Areas of Molecular Biology, 2011, 78, 449-521.	1.3	40
36	Refolding and characterization of methionine adenosyltransferase from Euglena gracilis. Protein Expression and Purification, 2011, 79, 128-136.	1.3	14

#	Article	IF	Citations
37	Cyclopentenone Prostaglandins with Dienone Structure Promote Cross-Linking of the Chemoresistance-Inducing Enzyme Glutathione Transferase P1-1. Molecular Pharmacology, 2010, 78, 723-733.	2.3	39
38	Conformational signals in the Câ€terminal domain of methionine adenosyltransferase I/III determine its nucleocytoplasmic distribution. FASEB Journal, 2009, 23, 3347-3360.	0.5	73
39	Structure-function relationships in methionine adenosyltransferases. Cellular and Molecular Life Sciences, 2009, 66, 636-648.	5.4	112
40	Subunit association as the stabilizing determinant for archaeal methionine adenosyltransferases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1082-1090.	2.3	10
41	Early effects of copper accumulation on methionine metabolism. Cellular and Molecular Life Sciences, 2008, 65, 2080-2090.	5.4	36
42	Betaine homocysteine S-methyltransferase: just a regulator of homocysteine metabolism?. Cellular and Molecular Life Sciences, 2006, 63, 2792-2803.	5.4	157
43	Rat liver betaine–homocysteine S-methyltransferase equilibrium unfolding: insights into intermediate structure through tryptophan substitutions. Biochemical Journal, 2005, 391, 589-599.	3.7	8
44	Methionine Adenosyltransferase \hat{l}_{\pm} -Helix Structure Unfolds at Lower Temperatures than \hat{l}^{2} -Sheet: A 2D-IR Study. Biophysical Journal, 2004, 86, 3951-3958.	0.5	27
45	Methionine Adenosyltransferase as a Useful Molecular Systematics Tool Revealed by Phylogenetic and Structural Analyses. Journal of Molecular Biology, 2004, 335, 693-706.	4.2	47
46	Crystal Structure of Rat Liver Betaine Homocysteine S-Methyltransferase Reveals New Oligomerization Features and Conformational Changes Upon Substrate Binding. Journal of Molecular Biology, 2004, 338, 771-782.	4.2	38
47	Cu2+binding triggers αBoPrP assembly into insoluble laminar polymers. FEBS Letters, 2004, 556, 161-166.	2.8	5
48	Leishmania donovanimethionine adenosyltransferase. FEBS Journal, 2003, 270, 28-35.	0.2	21
49	Crystal Structures of Methionine Adenosyltransferase Complexed with Substrates and Products Reveal the Methionine-ATP Recognition and Give Insights into the Catalytic Mechanism. Journal of Molecular Biology, 2003, 331, 407-416.	4.2	47
50	Role of an Intrasubunit Disulfide in the Association State of the Cytosolic Homo-oligomer Methionine Adenosyltransferase. Journal of Biological Chemistry, 2003, 278, 7285-7293.	3.4	27
51	Active-site-mutagenesis study of rat liver betaine-homocysteine S-methyltransferase. Biochemical Journal, 2003, 370, 945-952.	3.7	20
52	Equilibrium unfolding studies of the rat liver methionine adenosyltransferase III, a dimeric enzyme with intersubunit active sites. Biochemical Journal, 2002, 361, 307.	3.7	9
53	Equilibrium unfolding studies of the rat liver methionine adenosyltransferase III, a dimeric enzyme with intersubunit active sites. Biochemical Journal, 2002, 361, 307-315.	3.7	13
54	Prion Protein Interaction with Glycosaminoglycan Occurs with the Formation of Oligomeric Complexes Stabilized by Cu(II) Bridges. Journal of Molecular Biology, 2002, 319, 527-540.	4.2	78

#	Article	IF	Citations
55	Crystallization and preliminary X-ray study of recombinant betaine–homocysteineS-methyltransferase from rat liver. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1507-1510.	2.5	9
56	Assignment of a single disulfide bridge in rat liver methionine adenosyltransferase. FEBS Journal, 2000, 267, 132-137.	0.2	13
57	The crystal structure of tetrameric methionine adenosyltransferase from rat liver reveals the methionine-binding site 1 1Edited by R. Huber. Journal of Molecular Biology, 2000, 300, 363-375.	4.2	72
58	Refolding and Characterization of Rat Liver Methionine Adenosyltransferase from Escherichia coli Inclusion Bodies. Protein Expression and Purification, 2000, 19, 219-226.	1.3	27
59	Glucocorticoid Regulation of HepaticS-Adenosylmethionine Synthetase Gene Expression1. Endocrinology, 1997, 138, 1251-1258.	2.8	55
60	Characterization of Rat Liver-specific Methionine Adenosyltransferase Gene Promoter. Journal of Biological Chemistry, 1997, 272, 22875-22883.	3.4	24
61	Recombinant rat liver S-adenosyl-l-methionine synthetase tetramers and dimers are in equilibrium. International Journal of Biochemistry and Cell Biology, 1997, 29, 485-491.	2.8	20
62	S-adenosylmethionine synthesis: Molecular mechanisms and clinical implications., 1997, 73, 265-280.		431
63	Glucocorticoid Regulation of Hepatic S-Adenosylmethionine Synthetase Gene Expression. Endocrinology, 1997, 138, 1251-1258.	2.8	19
64	Differential expression pattern of S-adenosylmethionine synthetase isoenzymes during rat liver development. Hepatology, 1996, 24, 876-881.	7. 3	5
65	Effects of S-adenosylmethionine on lipid peroxidation and liver fibrogenesis in carbon tetrachloride-induced cirrhosis. Journal of Hepatology, 1996, 25, 200-205.	3.7	111
66	Role of thioltransferases on the modulation of rat liver S-adenosylmethionine synthetase activity by glutathione. FEBS Letters, 1996, 397, 293-297.	2.8	27
67	Site-directed mutagenesis of rat liver <i>S</i> -adenosylmethionine synthetase. Identification of a cysteine residue critical for the oligomeric state. Biochemical Journal, 1996, 315, 761-766.	3.7	55
68	Increased sensitivity to oxidative injury in chinese hamster ovary cells stably transfected with rat liver S-adenosylmethionine synthetase cDNA. Biochemical Journal, 1996, 319, 767-773.	3.7	33
69	Differential expression pattern ofS-adenosylmethionine synthetase isoenzymes during rat liver development. Hepatology, 1996, 24, 876-881.	7.3	104
70	Study of the rat liver S-adenosylmethionine synthetase active site with 8-azido ATP. Biochemical Journal, 1995, 308, 565-571.	3.7	11
71	Expression of rat liver S-adenosylmethionine synthetase in Escherichia coli results in two active oligomeric forms. Biochemical Journal, 1994, 301, 557-561.	3.7	43
72	Protein kinase C phosphorylation of rat liver <i>S</i> -adenosylmethionine synthetase: dissociation and production of an active monomer. Biochemical Journal, 1994, 303, 949-955.	3.7	35

#	Article	IF	CITATIONS
73	S-Adenosyl-L-Methionine Synthetase and Methionine Metabolism Deficiencies in Cirrhosis. Advances in Experimental Medicine and Biology, 1994, 368, 113-117.	1.6	24
74	Impairment of Methionine Metabolism in Liver Disease. Drug Investigation, 1992, 4, 8-13.	0.6	12
75	How is rat liverS-adenosylmethionine synthetase regulated?. FEBS Letters, 1992, 309, 1-4.	2.8	34
76	S-adenosylmethionine treatment prevents carbon tetrachloride—inducedS-adenosylmethionine synthetase inactivation and attenuates liver injury. Hepatology, 1992, 16, 1022-1027.	7.3	156
77	Analysis of the 5′ non-coding region of rat liverS-adenosylmethionine synthetase mRNA and comparison of theMrdeduced from the cDNA sequence and the purified enzyme. FEBS Letters, 1991, 290, 142-146.	2.8	51
78	Fourier transform infrared studies of active-site-methylated rhodopsin. Implications for chromophore-protein interaction, transducin activation, and the reaction pathway. Biophysical Journal, 1991, 59, 640-644.	0.5	18
79	The role of cysteine-150 in the structure and activity of rat liver S-adenosyl-l-methionine synthetase. Biochemical Journal, 1991, 274, 225-229.	3.7	39
80	Inhibition of glutathione synthesis in the liver leads toS-adenosyl-L-methionine synthetase reduction. Hepatology, 1991, 14, 528-533.	7.3	83
81	Inactivation and dissociation ofs-adenosylmethionine synthetase by modification of sulfhydryl groups and its possile occurrence in cirrhosis. Hepatology, 1990, 11, 216-222.	7.3	51
82	Mechanisms and Consequences of the Impaired Trans-Sulphuration Pathway in Liver Disease. Drugs, 1990, 40, 58-64.	10.9	23
83	Calcium-dependent binding between calmodulin and lysozyme. FEBS Letters, 1989, 247, 22-24.	2.8	2
84	Structural basis of protein kinase C activation by tumor promoters Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 9672-9676.	7.1	87
85	Modulation by the ratio S-adenosylmethionineS-adenosylhomocysteine of cyclic AMP-dependent phosphorylation of the 50 kDa protein of rat liver phospholipid methyltransferase. Biochimica Et Biophysica Acta - Molecular Cell Research, 1985, 847, 273-279.	4.1	12
86	How many phospholipid methyltransferases are there in mammalian cells?. Trends in Biochemical Sciences, 1984, 9, 471-472.	7.5	16
87	Activation of partially purified rat liver lipid methyltransferase by phosphorylation. Biochemical and Biophysical Research Communications, 1984, 122, 1065-1070.	2.1	39
88	Vimentin Tail Segments Are Differentially Exposed at Distinct Cellular Locations and in Response to Stress. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	10