Anton Gutakovskii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4651813/publications.pdf Version: 2024-02-01

		331259	395343
230	2,215	21	33
papers	citations	h-index	g-index
231	231	231	1971
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Normal-incidence infrared photoconductivity in Si p-i-n diode with embedded Ge self-assembled quantum dots. Applied Physics Letters, 1999, 75, 1413-1415.	1.5	108
2	Magnetic field-induced dissipation-free state in superconducting nanostructures. Nature Communications, 2013, 4, 1437.	5.8	90
3	Synthesis and Characterization of Cu _{<i>x</i>} S (<i>x</i> = 1–2) Nanocrystals Formed by the Langmuir–Blodgett Technique. Journal of Physical Chemistry C, 2014, 118, 23409-23414.	1.5	57
4	Closed curved graphite-like structures formation on micron-size diamond. Chemical Physics Letters, 1998, 289, 353-360.	1.2	56
5	Atomic and energy structure of InAs/AlAs quantum dots. Physical Review B, 2008, 78, .	1.1	52
6	Effect of Quantum Confinement on Optical Properties of Ge Nanocrystals in GeO[sub 2] Films. Semiconductors, 2005, 39, 1168.	0.2	51
7	Exciton recombination dynamics in an ensemble of (In,Al)As/AlAs quantum dots with indirect band-gap and type-I band alignment. Physical Review B, 2011, 84, .	1.1	42
8	Application of high-resolution electron microscopy for visualization and quantitative analysis of strain fields in heterostructures. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 1426-1432.	0.1	38
9	Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anti-calcification proteins defines pathogenic effects of calcium phosphate bions. Scientific Reports, 2016, 6, 27255.	1.6	37
10	Properties of extremely thin silicon layer in silicon-on-insulator structure formed by smart-cut technology. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 73, 82-86.	1.7	35
11	GeSi films with reduced dislocation density grown by molecular-beam epitaxy on compliant substrates based on porous silicon. Applied Physics Letters, 1999, 75, 4118-4120.	1.5	28
12	High quality relaxed GaAs quantum dots in GaP matrix. Applied Physics Letters, 2010, 97, 023108.	1.5	27
13	Charge Berezinskii-Kosterlitz-Thouless transition in superconducting NbTiN films. Scientific Reports, 2018, 8, 4082.	1.6	27
14	Fluorinated graphene suspension for flexible and printed electronics: Flakes, 2D films, and heterostructures. Materials and Design, 2019, 164, 107526.	3.3	27
15	Ge/Si quantum dot nanostructures grown with low-energy ion beam-assisted epitaxy. Surface and Coatings Technology, 2005, 196, 25-29.	2.2	25
16	Atomic structure and energy spectrum of Ga(As,P)/GaP heterostructures. Journal of Applied Physics, 2012, 112, .	1,1	25
17	Enhancement of the Si p-n diode NIR photoresponse by embedding β-FeSi2 nanocrystallites. Scientific Reports, 2015, 5, 14795.	1.6	24
18	Mechanisms of edge-dislocation formation in strained films of zinc blende and diamond cubic semiconductors epitaxially grown on (001)-oriented substrates. Journal of Applied Physics, 2011, 109, .	1,1	23

#	Article	IF	CITATIONS
19	Mechanism of induced nucleation of misfit dislocations in the Ge-on-Si(0 0 1) system and its role in the formation of the core structure of edge misfit dislocations. Acta Materialia, 2013, 61, 617-621.	3.8	23
20	LiVPO4F/Li3V2(PO4)3 nanostructured composite cathode materials prepared via mechanochemical way. Journal of Solid State Electrochemistry, 2014, 18, 1389-1399.	1.2	23
21	High resolution electron microscopy of semiconductor interfaces. Physica Status Solidi A, 1995, 150, 127-140.	1.7	22
22	Surface-enhanced Raman spectroscopy of semiconductor nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 75, 210-222.	1.3	22
23	Direct observations of dislocation half-loops inserted from the surface of the GeSi heteroepitaxial film. Applied Physics Letters, 2004, 85, 6140-6142.	1.5	21
24	Solid solutions GeSi grown by MBE on a low temperature Si (001) buffer layer: specific features of plastic relaxation. Thin Solid Films, 2001, 392, 98-106.	0.8	20
25	Plastic relaxation of solid GeSi solutions grown by molecular-beam epitaxy on the low temperature Si(100) buffer layer. Journal of Applied Physics, 2002, 91, 4710-4714.	1.1	20
26	Linear chains of Ge/Si quantum dots grown on a prepatterned surface formed by ion irradiation. Semiconductors, 2015, 49, 749-752.	0.2	20
27	Strain relaxation of GeSi/Si(001) heterostructures grown by low-temperature molecular-beam epitaxy. Journal of Applied Physics, 2004, 96, 7665-7674.	1.1	19
28	Potentialities and basic principles of controlling the plastic relaxation of GeSi/Si and Ge/Si films with stepwise variation in the composition. Semiconductors, 2008, 42, 1-20.	0.2	19
29	Features of formation and propagation of 60° and 90° misfit dislocations in GexSi1â^'xâ^•Siâ€^(xâ^1⁄40.4–0.5) caused by Si substrate misorientation from (001). Applied Physics Letters, 2008, 92, .	films 1.5	19
30	Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures. Nanotechnology, 2018, 29, 154002.	1.3	19
31	Atomic and electronic structure of ferroelectric La-doped HfO ₂ films. Materials Research Express, 2019, 6, 036403.	0.8	19
32	Heterostructures GexSi1â^'x/Si(001) (x=0.18–0.62) grown by molecular beam epitaxy at a low (350 °C) temperature: specific features of plastic relaxation. Thin Solid Films, 2004, 466, 69-74.	0.8	18
33	Strong sensitivity of photoluminescence of InAs/AlAs quantum dots to defects: evidence for lateral inter-dot transport. Semiconductor Science and Technology, 2006, 21, 527-531.	1.0	18
34	Optically detected magnetic resonance of photoexcited electrons in (In,Al)As/AlAs quantum dots with indirect band gap and type-I band alignment. Physical Review B, 2018, 97, .	1.1	18
35	The influence of irradiation and subsequent annealing on Si nanocrystals formed in SiO2 layers. Semiconductors, 2000, 34, 965-970.	0.2	17
36	Precise surface measurements at the nanoscale. Measurement Science and Technology, 2010, 21, 054004.	1.4	17

#	Article	IF	CITATIONS
37	Initial stage growth of Ge x Silâ^'x layers and Ge quantum dot formation on Ge x Silâ^'x surface by MBE. Nanoscale Research Letters, 2012, 7, 561.	3.1	17
38	Different electrochemical responses of LiFe0.5Mn0.5PO4 prepared by mechanochemical and solvothermal methods. Journal of Alloys and Compounds, 2018, 742, 454-465.	2.8	17
39	A new approach to the fabrication of VO ₂ nanoswitches with ultra-low energy consumption. Nanoscale, 2020, 12, 3443-3454.	2.8	17
40	Optical vibration modes in (Cd, Pb, Zn)S quantum dots in the Langmuir-Blodgett matrix. Physics of the Solid State, 2002, 44, 1976-1980.	0.2	16
41	Preparation of thin films of platinum group metals by pulsed MOCVD. I. Deposition of Ir layers. Journal of Structural Chemistry, 2012, 53, 715-724.	0.3	16
42	InAs-based metal-oxide-semiconductor structure formation in low-energy Townsend discharge. Applied Physics Letters, 2015, 107, .	1.5	16
43	Quantum dots formed in InSb/AlAs and AlSb/AlAs heterostructures. JETP Letters, 2016, 103, 692-698.	0.4	16
44	Probing the Mg2Si/Si(1 1 1) heterojunction for photovoltaic applications. Solar Energy, 2020, 211, 383-395.	2.9	16
45	The formation of partial misfit dislocations during heteroepitaxy. Physica Status Solidi A, 1981, 67, 299-304.	1.7	15
46	Formation of edge misfit dislocations in GexSi1â^'x (xâ^¼0.4–0.5) films grown on misoriented (001)→(111) Si substrates. Journal of Crystal Growth, 2008, 310, 3422-3427.	0.7	15
47	Hemozoin "knobs―in Opisthorchis felineus infected liver. Parasites and Vectors, 2015, 8, 459.	1.0	15
48	The convenient preparation of stable aryl-coated zerovalent iron nanoparticles. Beilstein Journal of Nanotechnology, 2015, 6, 1192-1198.	1.5	15
49	Novel self-assembled quantum dots in the GaSb/AlAs heterosystem. JETP Letters, 2012, 95, 534-536.	0.4	14
50	The Mechanism of {113} Defect Formation in Silicon: Clustering of Interstitial–Vacancy Pairs Studied by <i>In Situ</i> High-Resolution Electron Microscope Irradiation. Microscopy and Microanalysis, 2013, 19, 38-42.	0.2	14
51	Heterostructures with diffused interfaces: Luminescent technique for ascertainment of band alignment type. Journal of Applied Physics, 2018, 123, 115701.	1.1	14
52	On the structure and photoluminescence of dislocations in silicon. Journal of Applied Physics, 2018, 124, 053106.	1.1	14
53	Study of Onion-Like Carbon (OLC) Formation from Ultra Disperse Diamond (UDD). Materials Research Society Symposia Proceedings, 1994, 359, 105.	0.1	13
54	Effect of ion dose and annealing mode on photoluminescence from SiO2 implanted with Si ions. Semiconductors, 1998, 32, 1222-1228.	0.2	13

#	Article	IF	CITATIONS
55	Growth and structure of Ge nanoislands on an atomically clean silicon oxide surface. Physics of the Solid State, 2004, 46, 77-79.	0.2	13
56	Interface phonons in semiconductor nanostructures with quantum dots. Journal of Experimental and Theoretical Physics, 2005, 101, 554-561.	0.2	13
57	Sb as surfactant at plastic relaxation of GeSi/Si(001) films grown by molecular-beam epitaxy: Reduction of surface roughness value. Journal of Crystal Growth, 2006, 297, 57-60.	0.7	13
58	Pulsed ion-beam induced nucleation and growth of Ge nanocrystals on SiO2. Applied Physics Letters, 2007, 90, 133120.	1.5	13
59	Growth, structure and luminescence properties of multilayer Si/β-FeSi2NCs/Si/…/Si nanoheterostructures. Thin Solid Films, 2011, 519, 8480-8484.	0.8	13
60	CdZnS quantum dots formed by the Langmuir–Blodgett technique. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 04D109.	0.6	13
61	A room-temperature-operated Si LED with <i>β</i> -FeSi2 nanocrystals in the active layer: <i>μ</i> W emission power at 1.5 <i>μ</i> m. Journal of Applied Physics, 2017, 121, .	1.1	13
62	Heterostructures GexSi1â^'x/Si(001) grown by low-temperature (300–400°C) molecular beam epitaxy: Misfit dislocation propagation. Journal of Crystal Growth, 2005, 280, 309-319.	0.7	12
63	The formation of silicon nanocrystals in SiO2 layers by the implantation of Si ions with intermediate heat treatments. Semiconductors, 2005, 39, 552-556.	0.2	12
64	Nonradiative energy transfer between vertically coupled indirect and direct bandgap InAs quantum dots. Applied Physics Letters, 2010, 97, 263102.	1.5	12
65	Crystallization of Amorphous Si Nanoclusters in SiO _{<i>x</i>} Films Using Femtosecond Laser Pulse Annealings. Journal of Nanoscience and Nanotechnology, 2012, 12, 8694-8699.	0.9	12
66	Oxide-free InAs(111)A interface in metal-oxide-semiconductor structure with very low density of states prepared by anodic oxidation. Applied Physics Letters, 2014, 105, .	1.5	12
67	Influence of the additional p ⁺ doped layers on the properties of AlGaAs/InGaAs/AlGaAs heterostructures for high power SHF transistors. Journal Physics D: Applied Physics, 2016, 49, 095108.	1.3	12
68	Splitting and electrical properties of the SOI structure formed from the heavily boron doped silicon with using of the smart-cut technology. Microelectronic Engineering, 1999, 48, 383-386.	1.1	11
69	Specific features of formation and propagation of 60° and 90° misfit dislocations in GexSi1ⴒx/Si films with x>0.4. Journal of Crystal Growth, 2010, 312, 3080-3084.	0.7	11
70	Initial stages of Ge epitaxy on Si(111) under quasi-equilibrium growth conditions. JETP Letters, 2010, 92, 388-395.	0.4	11
71	Evolution of silicon nanoclusters and hydrogen in SiNx:H films: Influence of high hydrostatic pressure under annealing. Thin Solid Films, 2012, 520, 6207-6214.	0.8	11
72	Dislocation interaction of layers in the Ge/Ge-seed/Ge Si1â^'/Si(0 0 1) (xâ^¼ 0.3–0.5) system: Trapping of misfit dislocations on the Ge-seed/GeSi interface. Acta Materialia, 2013, 61, 5400-5405.	3.8	11

#	Article	IF	CITATIONS
73	Dominating nucleation of misfit dislocations from the surface in GeSi/Si(001) films with a stepwise composition grown by means of molecular-beam epitaxy. Journal of Crystal Growth, 2006, 293, 247-252.	0.7	10
74	Formation of edge misfit dislocations in GexSi1â^'x(xâ^¼0.4–0.8) films grown on misoriented (001)→(111) Si substrates: Features before and after film annealing. Journal of Applied Physics, 2010, 107, .	1.1	10
75	Formation of a Thin Continuous GaSb Film on Si(001) by Solid Phase Epitaxy. Nanomaterials, 2018, 8, 987.	1.9	10
76	Aluminum-induced crystallization of silicon suboxide thin films. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	10
77	Effect of the structure and the phase composition on the mechanical properties of Al–Cu–Li alloy laser welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 809, 140947.	2.6	10
78	Study of InGaAsGaAs strained-layer superlattices by TEM and RBS techniques. Physica Status Solidi A, 1989, 115, 413-425.	1.7	9
79	Electrical conductivity of silicon-on-insulator structures prepared by bonding silicon wafers to a substrate using hydrogen implantation. Semiconductors, 2000, 34, 1054-1057.	0.2	9
80	Enhanced strain relaxation in a two-step process of GexSi1â^'x/Si(001) heterostructures grown by low-temperature molecular-beam epitaxy. Applied Physics Letters, 2004, 84, 4599-4601.	1.5	9
81	Defects in the crystal structure of Cd x Hg1 â~' x Te layers grown on the Si (310) substrates. Semiconductors, 2011, 45, 926-934.	0.2	9
82	Resonant plasmon enhancement of light emission from CdSe/CdS nanoplatelets on Au nanodisk arrays. Journal of Chemical Physics, 2020, 153, 164708.	1.2	9
83	Electron-nuclei interaction in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>X</mml:mi> valley of (In,Al)As/AlAs quantum dots. Physical Review B, 2020, 101, .</mml:math 	1.1	9
84	Robust semiconductor-on-ferroelectric structures with hafnia–zirconia–alumina UTBOX stacks compatible with CMOS technology. Journal Physics D: Applied Physics, 2021, 54, 225101.	1.3	9
85	Defect Formation during MBE Growth of CdTe (111). Physica Status Solidi A, 1991, 126, 181-188.	1.7	8
86	InP decomposition phosphorus beam source for MBE: design, properties and superlattice growth. Semiconductor Science and Technology, 2003, 18, 417-422.	1.0	8
87	Instability of the distribution of atomic steps on Si(111) upon submonolayer gold adsorption at high temperatures. JETP Letters, 2005, 81, 117-121.	0.4	8
88	Preparation of thin films of platinum group metals by pulsed MOCVD. II. Deposition of Ru layers. Journal of Structural Chemistry, 2012, 53, 725-733.	0.3	8
89	New system of self-assembled GaSb/GaP quantum dots. Semiconductors, 2012, 46, 1534-1538.	0.2	8
90	Coexistence of type-I and type-II band alignment in Ga(Sb, P)/GaP heterostructures with pseudomorphic self-assembled quantum dots. JETP Letters, 2014, 99, 76-81.	0.4	8

#	Article	IF	CITATIONS
91	Peculiarities of structure, morphology, and electrochemistry of the doped 5-V spinel cathode materials LiNi0.5-x Mn1.5-y M x+y O4 (M = Co, Cr, Ti; x+y = 0.05) prepared by mechanochen of Solid State Electrochemistry, 2016, 20, 235-246.	nical way. Jo	ourn&al
92	MBE-grown InSb photodetector arrays. Technical Physics, 2017, 62, 915-919.	0.2	8
93	Fluorinated graphene nanoparticles with 1–3 nm electrically active graphene quantum dots. Nanotechnology, 2020, 31, 295602.	1.3	8
94	Defects and their Electronic Properties in High-Pressure-Annealed SOI Structures Sliced by Hydrogen. , 2002, , 269-288.		8
95	In Situ HREM Irradiation Study of an Intrinsic Point Defects Clustering in FZ-Si. Crystal Research and Technology, 2000, 35, 775-786.	0.6	7
96	MODIFICATION OF GROWTH MODE OF Ge ON SI BY PULSED LOW-ENERGY ION-BEAM IRRADIATION. International Journal of Nanoscience, 2004, 03, 19-27.	0.4	7
97	Formation of nanocrystalline silicon films using high-dose H+ ion implantation into silicon-on-insulator layers with subsequent rapid thermal annealing. Semiconductors, 2004, 38, 107-112.	0.2	7
98	High-precision nanoscale length measurement. Nanotechnologies in Russia, 2013, 8, 518-531.	0.7	7
99	Dual threshold diode based on the superconductor-to-insulator transition in ultrathin TiN films. Applied Physics Letters, 2013, 102, .	1.5	7
100	Formation of iron and iron silicides on silicon and iron surfaces. Role of the deposition rate and volumetric effects. Applied Physics A: Materials Science and Processing, 2013, 112, 507-515.	1.1	7
101	Ferromagnetic HfO2/Si/GaAs interface for spin-polarimetry applications. Applied Physics Letters, 2015, 107, .	1.5	7
102	Photoluminescence associated with {113} defects in oxygenâ€implanted silicon. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700317.	0.8	7
103	Resistive Switching Effect with ON/OFF Current Relation up to 10 ⁹ in 2D Printed Composite Films of Fluorinated Graphene with V ₂ O ₅ Nanoparticles. Advanced Electronic Materials, 2019, 5, 1900310.	2.6	7
104	Bimetallic Pt,Ir-containing coatings formed by MOCVD for medical applications. Journal of Materials Science: Materials in Medicine, 2019, 30, 69.	1.7	7
105	Resistive switching on individual V ₂ O ₅ nanoparticles encapsulated in fluorinated graphene films. Physical Chemistry Chemical Physics, 2021, 23, 20434-20443.	1.3	7
106	Transformation of the InP(001) surface upon annealing in an arsenic flux. Surface Science, 2021, 710, 121861.	0.8	7
107	Morphological transformations of vanadium oxide films during low-temperature reduction in hydrogen electron cyclotron resonance plasma. Journal of Surface Investigation, 2007, 1, 454-461.	0.1	6
108	Influence of shape of GaN/AlN quantum dots on luminescence decay law. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 653-656.	0.8	6

#	Article	IF	CITATIONS
109	High-quality single-crystal diamond-graphite-diamond membranes and devices. International Journal of Nanotechnology, 2015, 12, 226.	0.1	6
110	Raman, AFM, and TEM profiling of QD multilayer structures. Materials Research Express, 2015, 2, 035003.	0.8	6
111	Recombination and spin dynamics of excitons in thin (Ga,Al)(Sb,As)/AlAs quantum wells with an indirect band gap and type-I band alignment. Physical Review B, 2020, 102, .	1.1	6
112	Synthesis of crystalline Mg2Si films by ultrafast deposition of Mg on Si(111) and Si(001) at high temperatures. Mg/Si intermixing and reaction mechanisms. Materials Chemistry and Physics, 2021, 258, 123903.	2.0	6
113	Extended Defects in O+-Implanted Si Layers and Their Luminescence. Crystallography Reports, 2021, 66, 625-635.	0.1	6
114	On the mechanism of {113}-defect formation in Si. , 2005, , 359-362.		6
115	Intrinsic Point Defect Clustering in Si: A Study by HVEM and HREM in Situ Electron Irradiation. , 1997, , 63-92.		6
116	Epitaxial silicon films deposited at high rates by gas-jet electron beam plasma CVD. Surface and Coatings Technology, 2003, 174-175, 1178-1181.	2.2	5
117	Formation of Ultrasmall Germanium Nanoislands with a High Density on an Atomically Clean Surface of Silicon Oxide. Physics of the Solid State, 2005, 47, 67.	0.2	5
118	Narrowing of ground energy level distribution in an array of InAs/AlAs QDs by post grown annealing. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3932-3934.	0.8	5
119	Origination of misfit dislocations at the surface during the growth of GeSi/Si(001) films by low-temperature (300–400°C) molecular-beam epitaxy. Semiconductors, 2006, 40, 319-326.	0.2	5
120	Pulsed ion-beam assisted deposition of Ge nanocrystals on SiO2 for non-volatile memory device. Thin Solid Films, 2008, 517, 313-316.	0.8	5
121	Investigation of Multilayer Silicon Structures with Buried Iron Silicide Nanocrystallites: Growth, Structure, and Properties. Journal of Nanoscience and Nanotechnology, 2008, 8, 527-534.	0.9	5
122	Spontaneous composition modulation during Cd x Hg1â^'x Te(301) molecular beam epitaxy. JETP Letters, 2011, 94, 324-328.	0.4	5
123	Decomposition of a supersaturated solid solution of Fe in GaAs. Inorganic Materials, 2012, 48, 93-95.	0.2	5
124	Structure and Optical Properties of Ca Silicide Films and Si/Ca ₃ Si ₄ /Si(111) Heterostructures. Solid State Phenomena, 2014, 213, 71-79.	0.3	5
125	Specific features of plastic relaxation of a metastable Ge x Si1 â^' x layer buried between a silicon substrate and a relaxed germanium layer. Physics of the Solid State, 2014, 56, 247-253.	0.2	5
126	Formation of Mg silicides on amorphous Si. Origin and role of high pressure in the film growth. Materials Chemistry and Physics, 2014, 148, 1078-1082.	2.0	5

#	Article	IF	CITATIONS
127	Strained multilayer structures with pseudomorphic GeSiSn layers. Semiconductors, 2016, 50, 1584-1588.	0.2	5
128	Self-assembled strained GeSiSn nanoscale structures grown by MBE on Si(100). Journal of Crystal Growth, 2017, 457, 215-219.	0.7	5
129	Formation of low-dimensional structures in the InSb/AlAs heterosystem. Semiconductors, 2017, 51, 1233-1239.	0.2	5
130	Spinodal Decomposition in InSb/AlAs Heterostructures. Semiconductors, 2018, 52, 1392-1397.	0.2	5
131	Influence of a Low-Temperature GaAs Dislocation Filter on the Perfection of GaAs/Si Layers. Optoelectronics, Instrumentation and Data Processing, 2018, 54, 181-186.	0.2	5
132	GaAs/GaP Quantum-Well Heterostructures Grown on Si Substrates. Semiconductors, 2019, 53, 1143-1147.	0.2	5
133	Structure of Hf0.9La0.1O2 Ferroelectric Films Obtained by the Atomic Layer Deposition. JETP Letters, 2019, 109, 116-120.	0.4	5
134	Graphene/Hexagonal Boron Nitride Composite Nanoparticles for 2D Printing Technologies. Advanced Engineering Materials, 2022, 24, 2100917.	1.6	5
135	Structure of cadmium and lead sulfide nanoclusters in a matrix of a langmuir-blodgett film. Journal of Structural Chemistry, 1999, 40, 485-487.	0.3	4
136	Defects in silicon heat-treated under uniform stress and irradiated with fast neutrons. Physica Status Solidi A, 2003, 199, 207-213.	1.7	4
137	Formation, crystal structure, and properties of silicon with buried iron disilicide nanocrystallites on Si (100) substrates. Semiconductors, 2007, 41, 1067-1073.	0.2	4
138	Plastic relaxation of GeSi/Si(001) films grown by molecular-beam epitaxy in the presence of the Sb surfactant. Semiconductors, 2007, 41, 1234-1239.	0.2	4
139	Crystal perfection of GaP films grown on Si substrates by solid-source MBE with atomic hydrogen. Semiconductors, 2009, 43, 1235-1239.	0.2	4
140	Strained germanium films in Ge/InGaAs/GaAs heterostructures: Formation of edge misfit dislocations at the Ge/InGaAs interface. Physics of the Solid State, 2011, 53, 2005-2011.	0.2	4
141	Non-linear conduction in the critical region of the superconductor-insulator transition in TiN thin films. Journal of Physics: Conference Series, 2012, 400, 022042.	0.3	4
142	Edge misfit dislocations in the GeSi/Si(001) pair: Conditions and specific features of high-quantity generation. Journal of Crystal Growth, 2012, 338, 12-15.	0.7	4
143	Structural state of Ge/Si heterosystems with (001), (111), and (7 7 10) interfaces. Bulletin of the Russian Academy of Sciences: Physics, 2012, 76, 325-327.	0.1	4
144	Analysis of the dislocation structure at the Ge/Si(111) heterointerface. Journal of Surface Investigation, 2014, 8, 787-793.	0.1	4

#	Article	IF	CITATIONS
145	InAsSb on GaAs (001): influence of the arsenic molecules form on composition and crystalline properties of MBE layers. Journal of Physics: Conference Series, 2015, 643, 012006.	0.3	4
146	Formation and crystal structure of GaSb/GaP quantum dots. Bulletin of the Russian Academy of Sciences: Physics, 2016, 80, 17-22.	0.1	4
147	Unexpected travel of Lomer-type dislocations in Ge/GexSi1-x/Si(001) heterostructures. Thin Solid Films, 2016, 616, 348-350.	0.8	4
148	Selective MOCVD synthesis of VO ₂ crystals on nanosharp Si structures. CrystEngComm, 2021, 23, 443-452.	1.3	4
149	Epitaxial growth of peculiar GeSn and SiSn nanostructures using a Sn island array as a seed. Applied Surface Science, 2021, 553, 149572.	3.1	4
150	The plastic deformation kinetics for heteroepitaxial films during the misfit dislocation generation from the growth surface. Physica Status Solidi A, 1981, 66, 249-253.	1.7	3
151	Self-Orientation of Silicon Nanocrystals Created under Pulse Laser Impact in Stressed α-Si:H Films on Glass Substrates. Solid State Phenomena, 2001, 82-84, 681-686.	0.3	3
152	Influence of the misfit-dislocation screw component on the formation of threading dislocations in semiconductor heterostructures. Semiconductors, 2002, 36, 290-297.	0.2	3
153	Ge Nanoclusters in GeO ₂ : Synthesis and Optical Properties. Solid State Phenomena, 2005, 108-109, 83-90.	0.3	3
154	<title>Dense arrays of Ge nanoclusters induced by low-energy ion-beam assisted deposition on
SiO<formula><inf><roman>2</roman></inf></formula> films</title> ., 2006, , .		3
155	Role of the dislocation screw component in the formation of the dislocation structure in Ge- and Si-based semiconductor heterosystems. Journal of Surface Investigation, 2007, 1, 247-254.	0.1	3
156	Silicon layers atop iron silicide nanoislands on Si(100) substrate: Island formation, silicon growth, morphology and structure. Thin Solid Films, 2007, 515, 7805-7812.	0.8	3
157	Effect of the ion-energy loss rate on defect formation during implantation in silicon nanocrystals. Semiconductors, 2008, 42, 1127-1131.	0.2	3
158	Formation of misfit edge dislocations in Ge x Si1 â^' x films (x â^¼ 0.4–0.5) grown on tilted Si(001) → (111) substrates. Physics of the Solid State, 2008, 50, 1857-1861.	0.2	3
159	Heteroepitaxy of Ge x Si1 â^' x (x â^¼ 0.4–0.5) films on Si(001) substrates misoriented to (111): Formation of short edge misfit dislocations alone in the misorientation direction. Physics of the Solid State, 2010, 52, 32-36.	0.2	3
160	Precise measurements of nanostructure parameters. Optoelectronics, Instrumentation and Data Processing, 2010, 46, 301-311.	0.2	3
161	Optical property improvement of InAs/GaAs quantum dots grown by hydrogen-plasma-assisted molecular beam epitaxy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	3
			_

Edge misfit dislocations in Ge x Si1 \hat{a} x /Si(001) (x \hat{a} 4 1) heterostructures: role of buffer Ge y Si1 \hat{a} y (y <) Tj ETQq0 0 0 rgBT /Overl

#	Article	IF	CITATIONS
163	Ge and GexSi1â^'x islands formation on GexSi1â^'x solid solution surface. Thin Solid Films, 2012, 520, 3319-3321.	0.8	3
164	Brief observe on iron silicide growth on amorphous silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1742-1745.	0.8	3
165	Surface-enhanced Raman scattering by semiconductor nanostructures. Optoelectronics, Instrumentation and Data Processing, 2013, 49, 504-513.	0.2	3
166	Heteroepitaxy of AllIBV films on vicinal Si(001) substrates. Optoelectronics, Instrumentation and Data Processing, 2014, 50, 224-233.	0.2	3
167	Electron microscopic studies of CuS nanocrystals formed in Langmuir-Blodgett films. Optoelectronics, Instrumentation and Data Processing, 2014, 50, 304-309.	0.2	3
168	Experimental observation of the dislocation walls in heterostructures with two interfaces: Ge/Ge _{0.5} Si _{0.5} 10Ânm/Si(001) as an example. Philosophical Magazine Letters, 2016, 96, 361-366.	0.5	3
169	Sn influence on MBE growth of GeSiSn/Si MQW. Journal of Physics: Conference Series, 2017, 816, 012020.	0.3	3
170	Electron Microscopy Study of Metal Sulfide Nanocrystals Formed in Langmuir–Blodgett Films. Nanotechnologies in Russia, 2017, 12, 369-375.	0.7	3
171	Silicon p+–pâ^'–n Diodes with Embedded β-FeSi ₂ and CrSi ₂ Nanocrystals: Morphology, Crystal Structure and Photoelectric Properties. International Journal of Nanoscience, 2019, 18, 1940084.	0.4	3
172	An Influence of the Si(111)3-4 ^o Vicinal Surface on the Solid Phase Epitaxy of α-FeSi ₂ Nanorods and their Crystal Parameters. Key Engineering Materials, 2019, 806, 30-35.	0.4	3
173	Effect of Sn for the dislocation-free SiSn nanostructure formation on the vapor-liquid-crystal mechanism. AIP Advances, 2020, 10, 015309.	0.6	3
174	Si-based light emitters synthesized with Ge+ ion bombardment. Journal of Applied Physics, 2021, 130, .	1.1	3
175	Optimization of the plastic relaxation of misfit stresses in GexSi1â^'x /Si(001) (xâ‰0.61) heterostructures. Technical Physics Letters, 2004, 30, 68-70.	0.2	2
176	VARIATION OF IN-PLANE LATTICE CONSTANT OF Si/Ge/Si HETEROSTRUCTURES WITH Ge QUANTUM DOTS. International Journal of Nanoscience, 2007, 06, 297-299.	0.4	2
177	New Compositionally-Ordered GeSi Nano Dots Fabricated with 1250 keV Electrons. Advanced Materials Research, 2007, 26-28, 1195-1198.	0.3	2
178	Structure and electrical properties of polycrystalline SiGe films grown by molecular beam deposition. Semiconductors, 2007, 41, 341-344.	0.2	2
179	High-quality structures with InAs/Al0.9Ga0.1As QDs produced by droplet epitaxy. Journal of Crystal Growth, 2011, 337, 93-96.	0.7	2
180	Role of edge dislocations in plastic relaxation of GeSi/Si(001) heterostructures: Dependence of introduction mechanisms on film thickness. Physics of the Solid State, 2015, 57, 765-770.	0.2	2

#	Article	IF	CITATIONS
181	Experimental observation of motion of edge dislocations in Ge/Ge x Si1–x /Si(001) (x = 0.2–0.6) heterostructures. Journal of Experimental and Theoretical Physics, 2016, 123, 832-837.	0.2	2
182	Effect of synthesis conditions on the structure and properties of new SiC x N y M z materials for spintronics. Journal of Structural Chemistry, 2017, 58, 1493-1502.	0.3	2
183	Silicide phase formation by Mg deposition on amorphous Si. Ab initio calculations, growth process and thermal stability. Journal of Alloys and Compounds, 2019, 778, 514-521.	2.8	2
184	Preparation of monolayers of nanoparticles for transmission electron microscopy. Technical Physics, 2000, 45, 783-785.	0.2	1
185	Interaction of a Ti-capped Co thin film with Si3N4. Applied Physics Letters, 2000, 77, 4307-4309.	1.5	1
186	<title>Effect of stress on defect transformation in hydrogen-implanted silicon and SOI
structures</title> . , 2001, 4412, 120.		1
187	X-ray-emission study of the structure of Si:H layers formed by low-energy hydrogen-ion implantation. Semiconductors, 2002, 36, 568-573.	0.2	1
188	Defect formation in LT MBE InGaAs and GaAs. Journal of Structural Chemistry, 2004, 45, S96-S102.	0.3	1
189	Photoluminescence kinetics of wurtzite GaN quantum dots in an AlN matrix. JETP Letters, 2005, 81, 62-65.	0.4	1
190	Observation of antiphase domains in CdxHg1â^'x Te films on silicon by the phase contrast method in atomic force microscopy. JETP Letters, 2005, 82, 292-296.	0.4	1
191	<title>Ge nanoclusters in GeO<formula><inf><roman>2</roman></inf></formula>: formation and optical properties</title> . , 2006, 6260, 298.		1
192	The influence of elastic strains on the growth and properties of vertically ordered Ge "hut―clusters. Thin Solid Films, 2008, 517, 69-70.	0.8	1
193	Role of cross-slipping in formation of edge dislocations in heteroepitaxial systems GeSi-on-Si(001) and Ge-on-InGaAs/GaAs. Philosophical Magazine Letters, 2011, 91, 458-464.	0.5	1
194	Electroluminescent 1.5-μm light-emitting diodes based on p +-Si/NC β-FeSi2/n-Si structures. Semiconductors, 2015, 49, 508-512.	0.2	1
195	Structure and morphology of InSb epitaxial films in the AlAs matrix. Nanotechnologies in Russia, 2016, 11, 12-19.	0.7	1
196	Determining the structure of energy in heterostructures with diffuse interfaces. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 1052-1057.	0.1	1
197	Stress-induced indirect to direct band gap transition in \hat{I}^2 -FeSi2 nanocrystals embedded in Si. AIP Conference Proceedings, 2017, , .	0.3	1
198	Photoluminescence spectroscopy investigation of epitaxial Si/GaSb nanocrystals/Si heterostructure. AlP Conference Proceedings, 2017, , .	0.3	1

ANTON GUTAKOVSKII

#	Article	IF	CITATIONS
199	Formation and thermoelectric properties of the n- and p-type silicon nanostructures with embedded GaSb nanocrystals. Japanese Journal of Applied Physics, 2020, 59, SFFB04.	0.8	1
200	Extraction of the components of effective mobility in thin films. Journal Physics D: Applied Physics, 2021, 54, 255105.	1.3	1
201	Generation of hydrocarbons: Mechanism of reaction, geologic and experimental evidence. , 2005, , 179-182.		1
202	Phase composition evolution of iron silicide nanocrystals in the course of embedding into monocrystalline silicon. , 0, , .		1
203	Influence of the step height of the vicinal surface of germanium on the formation of antiphase boundaries in a gallium-arsenide-germanium-gallium-arsenide(001) system. Technical Physics Letters, 1998, 24, 949-951.	0.2	0
204	Optical phonons in nanosize GaAs and AlAs clusters in an InAs matrix. JETP Letters, 1999, 70, 469-475.	0.4	0
205	Ftir Spectroscopy and Spectroscopic Ellipsometry Study of Nanocrystalline Layers Formed by High-Dose Hydrogen and Deuterium Implantation of Silicon. Materials Research Society Symposia Proceedings, 2000, 609, 2491.	0.1	0
206	Formation of Si nanocrystals in a-Si films using excimer laser. , 2002, 4748, 465.		0
207	TEM study of incommensurate phases in minerals: implication for materials science. Materials Chemistry and Physics, 2003, 81, 237-240.	2.0	0
208	Laser Crystallization of Thin a-Si Films on Plastic Substrates Using Excimer Laser Treatments. Solid State Phenomena, 2004, 95-96, 29-34.	0.3	0
209	Recrystallization of Silicon on Insulator Layers Implanted with High Doses of Hydrogen Ions. Solid State Phenomena, 2003, 95-96, 23-28.	0.3	0
210	<title>Surface morphology transitions induced by ion beam action during Ge/Si MBE</title> . , 2004, 5401, 290.		0
211	Pulsed Low-energy Ion-beam Induced Nucleation and Growth of Ge Nanocrystals on SiO2. Materials Research Society Symposia Proceedings, 2007, 1020, 1.	0.1	0
212	Inclined misfit dislocations in a film/substrate system. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1896-1901.	0.8	0
213	On triple dislocation nodes observed by TEM in a Ge _{0.4} Si _{0.6} film grown on a slightly deviating (0 0 1)Si substrate. Philosophical Magazine Letters, 2011, 91, 510-515.	0.5	0
214	Electroluminescence properties of p‣i/ <i>β</i> â€FeSi ₂ NCs/…/n‣i mesa diodes with embedd multilayers of <i>β</i> â€FeSi ₂ nanocrystallites. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1850-1853.	ed 0.8	0
215	Atomic structure of extended defects in boron-implanted silicon layers. Optoelectronics, Instrumentation and Data Processing, 2014, 50, 241-246.	0.2	0
216	High resolution electron microscopy study of atomic structure and morphology of InSb films in AlAs matrix. , 2014, , .		0

#	Article	IF	CITATIONS
217	Structural and morphological features of ultrathin epitaxial InSb films in AlAs matrix. Journal of Physics: Conference Series, 2016, 769, 012030.	0.3	0
218	Nature of luminescence of PbS quantum dots synthesized in a Langmuir–Blodgett matrix. JETP Letters, 2017, 106, 18-22.	0.4	0
219	Strain in Ultrathin SiGeSn Layers in a Silicon Matrix. JETP Letters, 2017, 106, 780-784.	0.4	Ο
220	High-Resolution Electron Microscopy Investigations of Structure and Morphology of Cadmium Selenide Nanocrystals. Russian Physics Journal, 2018, 61, 509-515.	0.2	0
221	Forming Dislocation Pairs in the Ge/GeSi/Si(001) Heterostructure. Physics of the Solid State, 2019, 61, 145-148.	0.2	Ο
222	Electron Paramagnetic Resonance in Ge/Si Heterostructures with Mn-Doped Quantum Dots. JETP Letters, 2019, 109, 270-275.	0.4	0
223	Specific Features of the Atomic Structure of Iron Silicide Nanocrystals in a Silicon Matrix. Crystallography Reports, 2021, 66, 601-607.	0.1	0
224	Structural Transformations of the Dislocation Cores in Si and Their Relationship with Photoluminescence. Crystallography Reports, 2021, 66, 636-643.	0.1	0
225	Blister suppression in the CO+ molecule implanted SOI substrates with ultrathin buried oxides. Materials Today Communications, 2021, 28, 102498.	0.9	0
226	Effect of embedding of CrSi2 and β-FeSi2 nanocrystals into n-type conductivity silicon on the transport and thermal generation of carriers. Applied Surface Science, 2021, 566, 150620.	3.1	0
227	Conditions for the identical distribution of free carriers in thin films. Journal Physics D: Applied Physics, 2022, 55, 075101.	1.3	Ο
228	10.1007/s11453-008-1001-5. , 2010, 42, 1.		0
229	Embedding of iron silicide nanocrystals into monocrystalline silicon: suppression of emersion effect. , 2019, , .		0
230	Al ₂ O ₃ /InGaAs interface passivation by fluorine-containing anodic layers. Journal of Applied Physics, 2022, 131, 085301.	1.1	0