Stuart V Springham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4651456/publications.pdf

Version: 2024-02-01

840776 794594 23 459 11 19 g-index citations h-index papers 23 23 23 378 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection. Communications Materials, 2020, 1 , .	6.9	88
2	Library of Two-Dimensional Hybrid Lead Halide Perovskite Scintillator Crystals. Chemistry of Materials, 2020, 32, 8530-8539.	6.7	80
3	Effect of commensurate lithium doping on the scintillation of two-dimensional perovskite crystals. Journal of Materials Chemistry C, 2021, 9, 2504-2512.	5.5	46
4	Update on the Scientific Status of the Plasma Focus. Plasma, 2021, 4, 450-669.	1.8	29
5	Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder. Optics and Lasers in Engineering, 2008, 46, 711-720.	3.8	27
6	Short-Lived PET Radioisotope Production in a Small Plasma Focus Device. IEEE Transactions on Plasma Science, 2010, 38, 3393-3397.	1.3	27
7	Deterministic Light Yield, Fast Scintillation, and Microcolumn Structures in Lead Halide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 14082-14088.	3.1	25
8	Miniature Plasma Focus Device as a Compact Hard X-Ray Source for Fast Radiography Applications. IEEE Transactions on Plasma Science, 2010, 38, 652-657.	1.3	22
9	Neutron Emission Characteristics of NX-3 Plasma Focus Device: Speed Factor as the Guiding Rule for Yield Optimization. IEEE Transactions on Plasma Science, 2012, 40, 3280-3289.	1.3	22
10	Signal-to-noise ratio in coded aperture imaging. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 669, 22-31.	1.6	19
11	A large solid angle detector for medium energy charged particles. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1987, 262, 347-352.	1.6	13
12	Imaging of Plasma Focus Fusion by Proton Coded Aperture Technique. Journal of Fusion Energy, 2012, 31, 234-241.	1.2	12
13	Stable and Bright Commercial CsPbBr ₃ Quantum Dot-Resin Layers for Apparent X-ray Imaging Screen. ACS Applied Materials & Interfaces, 2021, 13, 59450-59459.	8.0	12
14	Mask design and fabrication in coded aperture imaging. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 709, 129-142.	1.6	10
15	Periodic wrappings in coded aperture imaging. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 738, 132-148.	1.6	6
16	Imaging of Fusion Protons from a 3 kJ Deuterium Plasma Focus. Japanese Journal of Applied Physics, 2005, 44, 4117-4121.	1.5	5
17	Coded aperture imaging of alpha source spatial distribution. Radiation Measurements, 2012, 47, 992-999.	1.4	5
18	Correlation Analysis of Intense and High-Energy Deuteron Beam, Pinch Images, and Neutron Yield. IEEE Transactions on Plasma Science, 2010, 38, 2434-2438.	1.3	4

#	Article	IF	CITATIONS
19	Iron oxide magnetic nanoparticles synthesized by atmospheric microplasmas. International Journal of Modern Physics Conference Series, 2014, 32, 1460343.	0.7	4
20	<title>Deep ion-beam lithography for micromachining applications</title> ., 1997,,.		3
21	Preliminary result of Coded Aperture Imaging on NX2 Plasma Focus. , 2009, , .		O
22	Neutron and Proton Diagnostics for Pulsed Plasma Fusion Devices. , 2017, , 293-353.		0
23	Plasma Focus Neutron Energy Measurements Using Zirconium and Beryllium Activation Detectors. , 2020, , .		0