
Guo-Ming Weng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4650876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Layerâ€byâ€Layer Assembly of Crossâ€Functional Semiâ€transparent MXeneâ€Carbon Nanotubes Composite Fil for Nextâ€Generation Electromagnetic Interference Shielding. Advanced Functional Materials, 2018, 28, 1803360.	ms 7.8	407
2	Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries. Energy and Environmental Science, 2017, 10, 735-741.	15.6	225
3	A high-energy and low-cost polysulfide/iodide redox flow battery. Nano Energy, 2016, 30, 283-292.	8.2	140
4	Scalable, Highly Conductive, and Micropatternable MXene Films for Enhanced Electromagnetic Interference Shielding. Matter, 2020, 3, 546-557.	5.0	127
5	Layer-by-Layer Assembly of Two-Dimensional Materials: Meticulous Control on the Nanoscale. Matter, 2020, 2, 1148-1165.	5.0	106
6	Mechanically strong and electrically conductive multilayer MXene nanocomposites. Nanoscale, 2019, 11, 20295-20300.	2.8	81
7	Weak polyelectrolyte-based multilayers via layer-by-layer assembly: Approaches, properties, and applications. Advances in Colloid and Interface Science, 2020, 282, 102200.	7.0	72
8	A Promising Carbon/g ₃ N ₄ Composite Negative Electrode for a Longâ€Life Sodiumâ€Ion Battery. Angewandte Chemie - International Edition, 2019, 58, 13727-13733.	7.2	70
9	High-performance LiTi ₂ (PO ₄) ₃ anodes for high-areal-capacity flexible aqueous lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 11764-11771.	5.2	49
10	Asymmetric allyl-activation of organosulfides for high-energy reversible redox flow batteries. Energy and Environmental Science, 2019, 12, 2244-2252.	15.6	40
11	Electrochemical-Osmotic Process for Simultaneous Recovery of Electric Energy, Water, and Metals from Wastewater. Environmental Science & Technology, 2020, 54, 8430-8442.	4.6	31
12	A Promising Carbon/g ₃ N ₄ Composite Negative Electrode for a Longâ€Life Sodiumâ€lon Battery. Angewandte Chemie, 2019, 131, 13865-13871.	1.6	29
13	Three electrolyte high voltage acid–alkaline hybrid rechargeable battery. Electrochimica Acta, 2011, 56, 9420-9425.	2.6	28
14	Electrochemical properties of novel organodisulfide poly 1,2-bis(thiophen-3-ylmethyl)disulfane as cathode material for secondary lithium batteries. Energy, 2009, 34, 1351-1354.	4.5	26
15	A highly efficient perovskite photovoltaic-aqueous Li/Na-ion battery system. Energy Storage Materials, 2020, 24, 557-564.	9.5	26
16	Hydrogen battery using neutralization energy. Nano Energy, 2018, 53, 240-244.	8.2	25
17	Underwater Organic Solar Cells via Selective Removal of Electron Acceptors near the Top Electrode. ACS Energy Letters, 2019, 4, 1034-1041.	8.8	25
18	High Voltage Vanadium-Metal Hydride Rechargeable Semi-Flow Battery. Journal of the Electrochemical Society, 2013, 160, A1384-A1389.	1.3	24

GUO-MING WENG

#	Article	IF	CITATIONS
19	A high-performance tin phosphide/carbon composite anode for lithium-ion batteries. Dalton Transactions, 2020, 49, 17026-17032.	1.6	24
20	Three-electrolyte electrochemical energy storage systems using both anion- and cation-exchange membranes as separators. Energy, 2019, 167, 1011-1018.	4.5	18
21	Investigations of High Voltage Vanadium-Metal Hydride Flow Battery toward kWh Scale Storage with 100 cm ² Electrodes. Journal of the Electrochemical Society, 2016, 163, A5180-A5187.	1.3	15
22	High-voltage pH differential vanadium-hydrogen flow battery. Materials Today Energy, 2018, 10, 126-131.	2.5	12
23	An Acid–Base Battery with Oxygen Electrodes: A Laboratory Demonstration of Electrochemical Power Sources. Journal of Chemical Education, 2019, 96, 1701-1706.	1.1	9
24	A Study of Alkaline-Based H ₂ -Br ₂ and H ₂ -I ₂ Reversible Fuel Cells. Journal of the Electrochemical Society, 2016, 163, F1471-F1479.	1.3	7
25	Study of the Electrochemical Behavior of High Voltage Vanadium-Metal Hydride Hybrid Semi-Flow Battery. ECS Transactions, 2013, 53, 39-50.	0.3	5
26	Synthesis and properties of copolymer of 3â€ŧhienylmethyl disulfide and benzyl disulfide for cathode material in lithium batteries. Journal of Applied Polymer Science, 2010, 116, 727-735.	1.3	4
27	Lead Acid-NiMH Hybrid Battery System Using Gel Electrolyte. ECS Transactions, 2012, 41, 133-143.	0.3	4
28	Comparison of Acid and Alkaline Hydrogen-Bromine Fuel Cell Systems. ECS Transactions, 2014, 58, 29-35.	0.3	4
29	MXene Films, Coatings, and Bulk Processing. , 2019, , 197-219.		4
30	Exploring the ionic interfaces of three-electrolyte pH differential power sources. Electrochimica Acta, 2019, 320, 134526.	2.6	1