
Claude Beaudoin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4650483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of a Crosstalk among TGR5, GLIS2, and TP53 Signaling Pathways in the Control of Undifferentiated Germ Cell Homeostasis and Chemoresistance. Advanced Science, 2022, 9, e2200626.	11.2	6
2	Analysis of the Reversible Impact of the Chemodrug Busulfan on Mouse Testes. Cells, 2021, 10, 2403.	4.1	5
3	Drosophila Accessory Gland: A Complementary In Vivo Model to Bring New Insight to Prostate Cancer. Cells, 2021, 10, 2387.	4.1	2
4	FXRα modulates leydig cell endocrine function in mouse. Molecular and Cellular Endocrinology, 2020, 518, 110995.	3.2	6
5	Sequential Ras/MAPK and PI3K/AKT/mTOR pathways recruitment drives basal extrusion in the prostate-like gland of Drosophila. Nature Communications, 2020, 11, 2300.	12.8	15
6	Farnesoid X receptor alpha (FXRα) is a critical actor of the development and pathologies of the male reproductive system. Cellular and Molecular Life Sciences, 2019, 76, 4849-4859.	5.4	2
7	Fxralpha gene is a target gene of hCG signaling pathway and represses hCG induced steroidogenesis. Journal of Steroid Biochemistry and Molecular Biology, 2019, 194, 105460.	2.5	5
8	Multigenerational impacts of bile exposure are mediated by TGR5 signaling pathways. Scientific Reports, 2018, 8, 16875.	3.3	16
9	Nuclear Receptor Metabolism of Bile Acids and Xenobiotics: A Coordinated Detoxification System with Impact on Health and Diseases. International Journal of Molecular Sciences, 2018, 19, 3630.	4.1	34
10	Crosstalk between BPA and FXRα Signaling Pathways Lead to Alterations of Undifferentiated Germ Cell Homeostasis and Male Fertility Disorders. Stem Cell Reports, 2018, 11, 944-958.	4.8	17
11	Cholesterol: A Gatekeeper of Male Fertility?. Frontiers in Endocrinology, 2018, 9, 369.	3.5	46
12	Bile acids and their receptors. Molecular Aspects of Medicine, 2017, 56, 2-9.	6.4	105
13	Bile acid homeostasis controls CAR signaling pathways in mouse testis through FXRalpha. Scientific Reports, 2017, 7, 42182.	3.3	16
14	Bile acids and male fertility: From mouse to human?. Molecular Aspects of Medicine, 2017, 56, 101-109.	6.4	18
15	ERRα induces H3K9 demethylation by LSD1 to promote cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3909-3914.	7.1	66
16	The Bile Acid Nuclear Receptor FXRα Is a Critical Regulator of Mouse Germ Cell Fate. Stem Cell Reports, 2017, 9, 315-328.	4.8	19
17	NPM1 Silencing Reduces Tumour Growth and MAPK Signalling in Prostate Cancer Cells. PLoS ONE, 2014, 9, e96293.	2.5	32