Qiwei Tian

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4650328/qiwei-tian-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

75
papers

4,634
citations

h-index

67
g-index

79
ext. papers

5,430
ext. citations

8.4
avg, IF

L-index

#	Paper	IF	Citations
75	NIR-II laser-mediated photo-Fenton-like reaction via plasmonic Cu9S8 for immunotherapy enhancement. <i>Nano Today</i> , 2022 , 43, 101397	17.9	2
74	Tumor Microenvironment-Responsive Reagent DFS@HKUST-1 for Photoacoustic Imaging-Guided Multimethod Therapy ACS Applied Bio Materials, 2021 , 4, 5753-5764	4.1	4
73	Ultrasmall Fe@FeO nanoparticles as T-T dual-mode MRI contrast agents for targeted tumor imaging. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2021 , 32, 102335	6	12
72	Ultrasensitive iron-based magnetic resonance contrast agent constructed with natural polyphenol tannic acid for tumor theranostics. <i>Science China Materials</i> , 2021 , 64, 498-509	7.1	13
71	Recent advances in enhanced chemodynamic therapy strategies. <i>Nano Today</i> , 2021 , 39, 101162	17.9	38
70	Engineering a Smart Agent for Enhanced Immunotherapy Effect by Simultaneously Blocking PD-L1 and CTLA-4. <i>Advanced Science</i> , 2021 , 8, e2102500	13.6	6
69	Remodeling endogenous H2S microenvironment in colon cancer to enhance chemodynamic therapy. <i>Chemical Engineering Journal</i> , 2021 , 422, 130098	14.7	11
68	Small Au nanorods-MnO2 sheet aggregation with enhanced photoacoustic imaging for tumor. <i>Materials Letters</i> , 2021 , 304, 130592	3.3	3
67	Zeolitic imidazolate framework nanoparticles loaded with gadolinium chelate as efficient T1 MRI contrast agent. <i>Journal of Materials Science</i> , 2021 , 56, 7386-7396	4.3	O
66	Magnetic-Photoacoustic Dual-Mode Probe for the Visualization of HS in Colorectal Cancer. <i>Analytical Chemistry</i> , 2020 , 92, 8254-8261	7.8	14
65	Ellagic acid-Fe nanoscale coordination polymer with higher longitudinal relaxivity for dual-modality T-weighted magnetic resonance and photoacoustic tumor imaging. <i>Nanomedicine: Nanotechnology, Biology, and Medicine,</i> 2020 , 28, 102219	6	4
64	Ellagic acid-Fe@BSA nanoparticles for endogenous HS accelerated Fe(III)/Fe(II) conversion and photothermal synergistically enhanced chemodynamic therapy. <i>Theranostics</i> , 2020 , 10, 4101-4115	12.1	41
63	Tumor microenvironment-activated NIR-II reagents for tumor imaging and therapy. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 4738-4747	7-3	37
62	pH and Glutathione Synergistically Triggered Release and Self-Assembly of Au Nanospheres for Tumor Theranostics. <i>ACS Applied Materials & District Research</i> , 12, 8050-8061	9.5	23
61	A smart theranostic platform for photoacoustic and magnetic resonance dual-imaging-guided photothermal-enhanced chemodynamic therapy. <i>Nanoscale</i> , 2020 , 12, 5139-5150	7.7	33
60	A hollow Cu9S8 theranostic nanoplatform based on a combination of increased active sites and photothermal performance in enhanced chemodynamic therapy. <i>Chemical Engineering Journal</i> , 2020 , 385, 123925	14.7	38
59	Self-Assembly of Giant Mo Hollow Opening Dodecahedra. <i>Journal of the American Chemical Society</i> , 2020 , 142, 13982-13988	16.4	25

(2018-2019)

58	Smart nanomedicine agents for cancer, triggered by pH, glutathione, HO, or HS. <i>International Journal of Nanomedicine</i> , 2019 , 14, 5729-5749	7.3	24	
57	Tumor pH-Responsive Albumin/Polyaniline Assemblies for Amplified Photoacoustic Imaging and Augmented Photothermal Therapy. <i>Small</i> , 2019 , 15, e1902926	11	49	
56	FeO-ZIF-8 assemblies as pH and glutathione responsive T-T switching magnetic resonance imaging contrast agent for sensitive tumor imaging in vivo. <i>Chemical Communications</i> , 2019 , 55, 478-481	5.8	42	
55	Macromolecules with Different Charges, Lengths, and Coordination Groups for the Coprecipitation Synthesis of Magnetic Iron Oxide Nanoparticles as MRI Contrast Agents. <i>Nanomaterials</i> , 2019 , 9,	5.4	10	
54	Macrophages-Mediated Delivery of Small Gold Nanorods for Tumor Hypoxia Photoacoustic Imaging and Enhanced Photothermal Therapy. <i>ACS Applied Materials & Delivery (Nature of State of S</i>	9.5	45	
53	EWeight Magnetic Resonance Imaging Performances of Iron Oxide Nanoparticles Modified with a Natural Protein Macromolecule and an Artificial Macromolecule. <i>Nanomaterials</i> , 2019 , 9,	5.4	15	
52	Mn-Porphyrin-Based Metal-Organic Framework with High Longitudinal Relaxivity for Magnetic Resonance Imaging Guidance and Oxygen Self-Supplementing Photodynamic Therapy. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 11, 41946-41956	9.5	46	
51	Surface Plasmon Resonance-Enhanced Photoacoustic Imaging and Photothermal Therapy of Endogenous H S-Triggered Au@Cu O. <i>Small</i> , 2019 , 15, e1903473	11	29	
50	Recent progress in HS activated diagnosis and treatment agents RSC Advances, 2019, 9, 33578-33588	3.7	17	
49	Functionalized Holmium-Doped Hollow Silica Nanospheres for Combined Sonodynamic and Hypoxia-Activated Therapy. <i>Advanced Functional Materials</i> , 2019 , 29, 1805764	15.6	55	
48	Large-scale synthesis of monodisperse Prussian blue nanoparticles for cancer theranostics via an "in situ modification" strategy. <i>International Journal of Nanomedicine</i> , 2019 , 14, 271-288	7.3	14	
47	Concentration effect on large scale synthesis of high quality small gold nanorods and their potential role in cancer theranostics. <i>Materials Science and Engineering C</i> , 2018 , 87, 120-127	8.3	18	
46	Functionalized CuBiS nanoparticles for dual-modal imaging and targeted photothermal/photodynamic therapy. <i>Nanoscale</i> , 2018 , 10, 4452-4462	7.7	42	
45	Paclitaxel-Induced Ultrasmall Gallic Acid-Fe@BSA Self-Assembly with Enhanced MRI Performance and Tumor Accumulation for Cancer Theranostics. <i>ACS Applied Materials & Description</i> (2018), 10, 284	18 ³⁵ 284	49 3	
44	Gadolinium-labelled iron/iron oxide core/shell nanoparticles as - contrast agent for magnetic resonance imaging <i>RSC Advances</i> , 2018 , 8, 26764-26770	3.7	14	
43	Identifying macrophage enrichment in atherosclerotic plaques by targeting dual-modal US imaging/MRI based on biodegradable Fe-doped hollow silica nanospheres conjugated with anti-CD68 antibody. <i>Nanoscale</i> , 2018 , 10, 20246-20255	7.7	20	
42	The In Situ Sulfidation of Cu2O by Endogenous H2S for Colon Cancer Theranostics. <i>Angewandte Chemie</i> , 2018 , 130, 16008-16012	3.6	4	
41	The In Situ Sulfidation of Cu O by Endogenous H S for Colon Cancer Theranostics. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15782-15786	16.4	87	

40	Ultrasmall WO@Epoly-l-glutamic Acid Nanoparticles as a Photoacoustic Imaging and Effective Photothermal-Enhanced Chemodynamic Therapy Agent for Cancer. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 38833-38844	9.5	71
39	A smart off-on copper sulfide photoacoustic imaging agent based on amorphous-crystalline transition for cancer imaging. <i>Chemical Communications</i> , 2018 , 54, 10962-10965	5.8	15
38	Water-Soluble Polymer Nanoparticles Constructed by Three-Component Self-Assembly: An Efficient Theranostic Agent for Phosphorescent Imaging and Photodynamic Therapy. <i>Chemistry - A European Journal</i> , 2017 , 23, 3728-3734	4.8	18
37	Hydrophilic graphene oxide/bismuth selenide nanocomposites for CT imaging, photoacoustic imaging, and photothermal therapy. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 1846-1855	7.3	41
36	Heteropoly blue doped polymer nanoparticles: an efficient theranostic agent for targeted photoacoustic imaging and near-infrared photothermal therapy in vivo. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 382-387	7.3	17
35	Recent progress in the direct synthesis of hierarchical zeolites: synthetic strategies and characterization methods. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 2195-2212	7.8	25
34	Dynamically tuning near-infrared-induced photothermal performances of TiO nanocrystals by Nb doping for imaging-guided photothermal therapy of tumors. <i>Nanoscale</i> , 2017 , 9, 9148-9159	7.7	61
33	BSA-assisted synthesis of ultrasmall gallic acid-Fe(III) coordination polymer nanoparticles for cancer theranostics. <i>International Journal of Nanomedicine</i> , 2017 , 12, 7207-7223	7.3	37
32	Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells. <i>RSC Advances</i> , 2017 , 7, 37887-3789	7 ^{3.7}	34
31	Small Gold Nanorods: Recent Advances in Synthesis, Biological Imaging, and Cancer Therapy. <i>Materials</i> , 2017 , 10,	3.5	63
30	Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites. <i>Advanced Functional Materials</i> , 2016 , 26, 1881-1891	15.6	51
29	Hierarchial Zeolites: Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites (Adv. Funct. Mater. 12/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 1854-1854	15.6	
28	Investigating the Influence of Mesoporosity in Zeolite Beta on Its Catalytic Performance for the Conversion of Methanol to Hydrocarbons. <i>ACS Catalysis</i> , 2015 , 5, 5837-5845	13.1	68
27	Multifunctional polypyrrole@Fe(3)O(4) nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy. <i>Small</i> , 2014 , 10, 1063-8	11	119
26	Sub-10 nm Fe3O4@Cu(2-x)S core-shell nanoparticles for dual-modal imaging and photothermal therapy. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8571-7	16.4	510
25	Synthesis and characterization of tin disulfide hexagonal nanoflakes via solvothermal decomposition. <i>Materials Letters</i> , 2012 , 67, 32-34	3.3	13
24	A method for joining individual graphene sheets. <i>Carbon</i> , 2012 , 50, 4965-4972	10.4	19
23	Construction of 980 nm laser-driven dye-sensitized photovoltaic cell with excellent performance for powering nanobiodevices implanted under the skin. <i>Journal of Materials Chemistry</i> , 2012 , 22, 18156		26

(2010-2012)

22	measured mechanical, electrical and field emission properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19196		29
21	Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells. <i>CrystEngComm</i> , 2012 , 14, 3847	3.3	114
20	In situ preparation of CuInS2 films on a flexible copper foil and their application in thin film solar cells. <i>CrystEngComm</i> , 2012 , 14, 1825	3.3	30
19	Flexible fiber-shaped CuinSe2 solar cells with single-wire-structure: Design, construction and performance. <i>Nano Energy</i> , 2012 , 1, 769-776	17.1	17
18	One-pot synthesis of large-scaled Janus AgAg2S nanoparticles and their photocatalytic properties. <i>CrystEngComm</i> , 2011 , 13, 7189	3.3	59
17	Large-scaled star-shaped EMnS nanocrystals with novel magnetic properties. <i>Chemical Communications</i> , 2011 , 47, 8100-2	5.8	35
16	Lightly doped single crystalline porous Si nanowires with improved optical and electrical properties. <i>Journal of Materials Chemistry</i> , 2011 , 21, 801-805		46
15	Uniform ZnSe microspheres self-assembled from ZnSe polyhedron shaped nanocrystals. <i>CrystEngComm</i> , 2011 , 13, 1518-1524	3.3	9
14	A controllable hydrothermal synthesis of uniform three-dimensional hierarchical microstructured ZnO films. <i>CrystEngComm</i> , 2011 , 13, 6107	3.3	14
13	Phase and luminescent intensity control of hydrophilic rare-earth up-converting nanophosphors prepared by one-pot solvothermal synthesis. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 6539-6544	5.7	24
12	Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. <i>ACS Nano</i> , 2011 , 5, 9761-71	16.7	940
11	A mobile Sn nanowire inside a EGa2 O3 tube: a practical nanoscale electrically/thermally driven switch. <i>Small</i> , 2011 , 7, 3377-84	11	10
10	Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. <i>Advanced Materials</i> , 2011 , 23, 3542-7	24	654
9	A general approach for the growth of metal oxide nanorod arrays on graphene sheets and their applications. <i>Chemistry - A European Journal</i> , 2011 , 17, 13912-7	4.8	62
8	Morphology-selective synthesis and wettability properties of well-aligned Cu2-xSe nanostructures on a copper substrate. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3053		29
7	Hydrothermal synthesis, growth mechanism, and properties of three-dimensional micro/nanoscaled hierarchical architecture films of hemimorphite zinc silicate. <i>CrystEngComm</i> , 2011 , 13, 2273	3.3	15
6	One-pot synthesis of ZnxCd1\(\mathbb{Z} \) nanocrystals with tunable optical properties from molecular precursors. <i>Journal of Alloys and Compounds</i> , 2010 , 506, 804-810	5.7	9
5	PEG-mediated solvothermal synthesis of NaYF4:Yb/Er superstructures with efficient upconversion luminescence. <i>Journal of Alloys and Compounds</i> , 2010 , 506, L17-L21	5.7	24

		Qiwe	I TIAN
4	Oriented free-standing ammonium vanadium oxide nanobelt membranes: highly selective absorbent materials. <i>Chemistry - A European Journal</i> , 2010 , 16, 14307-12	4.8	13
3	One-pot synthesis of amphiphilic superparamagnetic FePt nanoparticles and magnetic resonance imaging in vitro. <i>Journal of Magnetism and Magnetic Materials</i> , 2010 , 322, 973-977	2.8	46
2	Self-assembly of peptide-based multi-colour gels triggered by up-conversion rare earth nanoparticles. <i>Chemical Communications</i> , 2009 , 4100-2	5.8	42
1	High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. <i>Analytical Chemistry</i> , 2009 , 81, 8687-94	7.8	354