

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4650220/publications.pdf Version: 2024-02-01

ΟΙΔΝΗΙ

#	Article	IF	CITATIONS
1	A niobium-substituted sodium superionic conductor with conductivity higher than 5.5ÂmSÂcmâ^'1 prepared by solution-assisted solid-state reaction method. Journal of Power Sources, 2022, 518, 230765.	7.8	24
2	Fabrication of thin sheets of the sodium superionic conductor Na5YSi4O12 with tape casting. Chemical Engineering Journal, 2022, 435, 134774.	12.7	13
3	Recent Advances in Stabilization of Sodium Metal Anode in Contact with Organic Liquid and Solidâ€State Electrolytes. Energy Technology, 2022, 10, .	3.8	11
4	Ionic Conductivity of Na ₃ V ₂ P ₃ O ₁₂ as a Function of Electrochemical Potential and its Impact on Battery Performance. Batteries and Supercaps, 2021, 4, 479-484.	4.7	10
5	Energetic Stability and Its Role in the Mechanism of Ionic Transport in NASICON-Type Solid-State Electrolyte Li _{1+<i>x</i>} Al _{<i>x</i>} Ti _{2–<i>x</i>} (PO ₄) ₃ . Iournal of Physical Chemistry Letters. 2021. 12. 4400-4406.	4.6	8
6	Flexible All-Solid-State Li-Ion Battery Manufacturable in Ambient Atmosphere. ACS Applied Materials & Interfaces, 2020, 12, 37067-37078.	8.0	14
7	Performances of Solid Oxide Cells with La _{0.97} Ni _{0.5} Co _{0.5} O _{3â^ʾĨ´} as Air-Electrodes. Journal of the Electrochemical Society, 2020, 167, 084522.	2.9	1
8	Solid‣tate Electrolyte Materials for Sodium Batteries: Towards Practical Applications. ChemElectroChem, 2020, 7, 2693-2713.	3.4	72
9	A garnet structure-based all-solid-state Li battery without interface modification: resolving incompatibility issues on positive electrodes. Sustainable Energy and Fuels, 2019, 3, 280-291.	4.9	133
10	Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm ^{â°1} and its primary applications in symmetric battery cells. Journal of Materials Chemistry A, 2019, 7, 7766-7776.	10.3	129
11	Characterization and Optimization of La _{0.97} Ni _{0.5} Co _{0.5} O _{3â^ʾĨ′} -Based Air-Electrodes for Solid Oxide Cells. ACS Applied Energy Materials, 2018, 1, 2784-2792.	5.1	7
12	A Novel Sol–Gel Method for Large‣cale Production of Nanopowders: Preparation of Li _{1.5} Al _{0.5} Ti _{1.5} (<scp>PO</scp> ₄) ₃ as an Example. Journal of the American Ceramic Society, 2016, 99, 410-414.	3.8	79
13	Microstructural variations and their influence on the performance of solid oxide fuel cells based on yttrium-substituted strontium titanate ceramic anodes. Journal of Power Sources, 2015, 279, 678-685.	7.8	16
14	Electrochemical performance and stability of electrolyte-supported solid oxide fuel cells based on Y-substituted SrTiO3 ceramic anodes. Solid State Ionics, 2014, 262, 465-468.	2.7	11
15	Electrochemical performances of solid oxide fuel cells based on Y-substituted SrTiO3 ceramic anode materials. Journal of Power Sources, 2011, 196, 7308-7312.	7.8	57
16	Y-substituted SrTiO3–YSZ composites as anode materials for solid oxide fuel cells: Interaction between SYT and YSZ. Journal of Power Sources, 2010, 195, 1920-1925.	7.8	58