Xiaoming Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4649683/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facial Expression Recognition Based on Local Binary Patterns and Kernel Discriminant Isomap. Sensors, 2011, 11, 9573-9588.	3.8	98

2 Facial Expression Recognition via Deep Learning. IETE Technical Review (Institution of Electronics and) Tj ETQq0 0 0.32 BT /Overlock 10 T

3	Robust Facial Expression Recognition via Compressive Sensing. Sensors, 2012, 12, 3747-3761.	3.8	69
4	Spontaneous Speech Emotion Recognition Using Multiscale Deep Convolutional LSTM. IEEE Transactions on Affective Computing, 2022, 13, 680-688.	8.3	53
5	Learning deep multimodal affective features for spontaneous speech emotion recognition. Speech Communication, 2021, 127, 73-81.	2.8	52
6	A Review on Facial Expression Recognition: Feature Extraction and Classification. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 2016, 33, 505-517.	3.2	47
7	Robust emotion recognition in noisy speech via sparse representation. Neural Computing and Applications, 2014, 24, 1539-1553.	5.6	31
8	Learning Deep Binaural Representations With Deep Convolutional Neural Networks for Spontaneous Speech Emotion Recognition. IEEE Access, 2020, 8, 23496-23505.	4.2	26
9	Dimensionality reduction-based spoken emotion recognition. Multimedia Tools and Applications, 2013, 63, 615-646.	3.9	25
10	Speech Emotion Recognition Using an Enhanced Kernel Isomap for Human-Robot Interaction. International Journal of Advanced Robotic Systems, 2013, 10, 114.	2.1	14
11	Unsupervised Deep Anomaly Detection for Medical Images Using an Improved Adversarial Autoencoder. Journal of Digital Imaging, 2022, 35, 153-161.	2.9	12
12	Spoken emotion recognition via locality-constrained kernel sparse representation. Neural Computing and Applications, 2015, 26, 735-744.	5.6	11
13	Facial Expression Recognition via Non-Negative Least-Squares Sparse Coding. Information (Switzerland), 2014, 5, 305-318.	2.9	6
14	Deep Personality Trait Recognition: A Survey. Frontiers in Psychology, 2022, 13, .	2.1	5
15	Bio-inspired learning approach for electronic nose. Computing (Vienna/New York), 2018, 100, 387-402.	4.8	4
16	Speech Emotion Recognition by Combining a Unified First-Order Attention Network With Data Balance. IEEE Access, 2020, 8, 215851-215862.	4.2	4
17	Biologically Inspired Pattern Recognition forÂE-nose Sensors. Lecture Notes in Computer Science, 2016, , 142-155.	1.3	3
18	Learning inter-class optical flow difference using generative adversarial networks for facial expression recognition. Multimedia Tools and Applications, 2023, 82, 10099-10116.	3.9	2

#	Article	IF	CITATIONS
19	Phoneme recognition using an adaptive supervised manifold learning algorithm. Neural Computing and Applications, 2012, 21, 1501-1515.	5.6	1