Michael I Webb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4649615/publications.pdf

Version: 2024-02-01

840585 996849 15 489 11 15 citations h-index g-index papers 15 15 15 500 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Control of ligand-exchange processes and the oxidation state of the antimetastatic Ru(iii) complex NAMI-A by interactions with human serum albumin. Dalton Transactions, 2011, 40, 1322.	1.6	74
2	Serum-protein interactions with anticancer Ru(III) complexes KP1019 and KP418 characterized by EPR. Journal of Biological Inorganic Chemistry, 2010, 15, 131-145.	1.1	73
3	Pyridine Analogues of the Antimetastatic Ru(III) Complex NAMI-A Targeting Non-Covalent Interactions with Albumin. Inorganic Chemistry, 2012, 51, 954-966.	1.9	71
4	Increasing the Bioavailability of Ru ^{III} Anticancer Complexes through Hydrophobic Albumin Interactions. Chemistry - A European Journal, 2013, 19, 17031-17042.	1.7	63
5	EPR as a probe of the intracellular speciation of ruthenium(iii) anticancer compounds. Metallomics, 2013, 5, 1624.	1.0	40
6	Modulation of the $A\hat{l}^2$ peptide aggregation pathway by KP1019 limits $A\hat{l}^2$ -associated neurotoxicity. Metallomics, 2015, 7, 129-135.	1.0	37
7	Albumin binding and ligand-exchange processes of the Ru(<scp>iii</scp>) anticancer agent NAMI-A and its bis-DMSO analogue determined by ENDOR spectroscopy. Dalton Transactions, 2015, 44, 17482-17493.	1.6	36
8	Importance of Hydrogen Bonding: Structure–Activity Relationships of Ruthenium(III) Complexes with Pyridine-Based Ligands for Alzheimer's Disease Therapy. Journal of Medicinal Chemistry, 2021, 64, 10124-10138.	2.9	21
9	Merging the chemistry of electron-rich olefins with imidazolium ionic liquids: radicals and hydrogen-atom adducts. Chemical Science, 2011, 2, 2173.	3.7	17
10	Ruthenium(<scp>iii</scp>) complexes containing thiazole-based ligands that modulate amyloid-β aggregation. Metallomics, 2020, 12, 491-503.	1.0	17
11	Ruthenium(III) complexes with imidazole ligands that modulate the aggregation of the amyloid- \hat{l}^2 peptide via hydrophobic interactions. Journal of Inorganic Biochemistry, 2021, 214, 111303.	1.5	13
12	High metal substitution tolerance of anthrax lethal factor and characterization of its active copper-substituted analogue. Journal of Inorganic Biochemistry, 2014, 140, 12-22.	1.5	9
13	Stabilization of different redox levels of a tridentate benzoxazole amidophenoxide ligand when bound to Co(iii) or V(v). Dalton Transactions, 2019, 48, 13326-13336.	1.6	7
14	A Dual-Pronged Approach: A Ruthenium(III) Complex That Modulates Amyloid-Î ² Aggregation and Disrupts Its Formed Aggregates. Inorganic Chemistry, 2022, 61, 2733-2744.	1.9	7
15	Ruthenium(II)–arene complexes with chelating quinoline ligands as anti-amyloid agents. Canadian Journal of Chemistry, 2022, 100, 18-24.	0.6	4