
Hans-Georg Schaible

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4649596/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Afferent and spinal mechanisms of joint pain. Pain, 1993, 55, 5-54.	2.0	534
2	Mechanisms of Pain in Arthritis. Annals of the New York Academy of Sciences, 2002, 966, 343-354.	1.8	471
3	A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nature Genetics, 2013, 45, 1399-1404.	9.4	264
4	Nociceptive neurons detect cytokines in arthritis. Arthritis Research and Therapy, 2014, 16, 470.	1.6	229
5	Sensitization of unmyelinated sensory fibers of the joint nerve to mechanical stimuli by interleukin-6 in the rat: An inflammatory mechanism of joint pain. Arthritis and Rheumatism, 2007, 56, 351-359.	6.7	217
6	Changes in the Effect of Spinal Prostaglandin E2 during Inflammation: Prostaglandin E (EP1-EP4) Receptors in Spinal Nociceptive Processing of Input from the Normal or Inflamed Knee Joint. Journal of Neuroscience, 2004, 24, 642-651.	1.7	188
7	Mechanisms of Chronic Pain in Osteoarthritis. Current Rheumatology Reports, 2012, 14, 549-556.	2.1	180
8	Joint pain. Experimental Brain Research, 2009, 196, 153-162.	0.7	167
9	Mechanisms of Osteoarthritic Pain. Studies in Humans and Experimental Models. Frontiers in Molecular Neuroscience, 2017, 10, 349.	1.4	156
10	Antinociceptive effects of tumor necrosis factor α neutralization in a rat model of antigenâ€induced arthritis: Evidence of a neuronal target. Arthritis and Rheumatism, 2008, 58, 2368-2378.	6.7	142
11	Is there a correlation between spreading depression, neurogenic inflammation, and nociception that might cause migraine headache?. Annals of Neurology, 2001, 49, 7-13.	2.8	122
12	Pathophysiology of pain. Langenbeck's Archives of Surgery, 2004, 389, 237-43.	0.8	122
13	Update on peripheral mechanisms of pain: beyond prostaglandins and cytokines. Arthritis Research and Therapy, 2011, 13, 210.	1.6	118
14	Interleukinâ€17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukinâ€17 receptors in rodents. Arthritis and Rheumatism, 2012, 64, 4125-4134.	6.7	110
15	Tumor necrosis factor causes persistent sensitization of joint nociceptors to mechanical stimuli in rats. Arthritis and Rheumatism, 2010, 62, 3806-3814.	6.7	103
16	Experimental arthritis causes tumor necrosis factor-α-dependent infiltration of macrophages into rat dorsal root ganglia which correlates with pain-related behavior. Pain, 2009, 145, 151-159.	2.0	99
17	Neuronal IL-17 receptor upregulates TRPV4 but not TRPV1 receptors in DRG neurons and mediates mechanical but not thermal hyperalgesia. Molecular and Cellular Neurosciences, 2013, 52, 152-160.	1.0	92
18	The role of interleukinâ€1β in arthritic pain: Main involvement in thermal, but not mechanical, hyperalgesia in rat antigenâ€induced arthritis. Arthritis and Rheumatism, 2012, 64, 3897-3907.	6.7	91

HANS-GEORG SCHAIBLE

#	Article	IF	CITATIONS
19	Neurogenic Aspects of Inflammation. Rheumatic Disease Clinics of North America, 2005, 31, 77-101.	0.8	80
20	Spinal interleukinâ€6 is an amplifier of arthritic pain in the rat. Arthritis and Rheumatism, 2012, 64, 2233-2242.	6.7	68
21	Spinal tumor necrosis factor α neutralization reduces peripheral inflammation and hyperalgesia and suppresses autonomic responses in experimental arthritis: A role for spinal tumor necrosis factor α during induction and maintenance of peripheral inflammation. Arthritis and Rheumatism, 2010, 62, 1308-1318.	6.7	67
22	Calcitonin gene-related peptide enhances TTX-resistant sodium currents in cultured dorsal root ganglion neurons from adult rats. Pain, 2005, 116, 194-204.	2.0	61
23	The anti-inflammatory effects of sympathectomy in murine antigen-induced arthritis are associated with a reduction of Th1 and Th17 responses. Annals of the Rheumatic Diseases, 2012, 71, 253-261.	0.5	59
24	Pain sensation in human osteoarthritic knee joints is strongly enhanced by diabetes mellitus. Pain, 2017, 158, 1743-1753.	2.0	58
25	Function of the sympathetic supply in acute and chronic experimental joint inflammation. Autonomic Neuroscience: Basic and Clinical, 2014, 182, 55-64.	1.4	56
26	Spinal Mechanisms Contributing to Joint Pain. Novartis Foundation Symposium, 2008, , 4-27.	1.2	52
27	Interleukin-6-dependent influence of nociceptive sensory neurons on antigen-induced arthritis. Arthritis Research and Therapy, 2015, 17, 334.	1.6	51
28	Gait abnormalities differentially indicate pain or structural joint damage in monoarticular antigen-induced arthritis. Pain, 2009, 145, 142-150.	2.0	47
29	Involvement of Spinal IL-6 Trans-Signaling in the Induction of Hyperexcitability of Deep Dorsal Horn Neurons by Spinal Tumor Necrosis Factor-Alpha. Journal of Neuroscience, 2016, 36, 9782-9791.	1.7	38
30	Interleukin-17A is involved in mechanical hyperalgesia but not in the severity of murine antigen-induced arthritis. Scientific Reports, 2017, 7, 10334.	1.6	37
31	Effects of Differently Activated Rodent Macrophages on Sensory Neurons: Implications for Arthritis Pain. Arthritis and Rheumatology, 2015, 67, 2263-2272.	2.9	32
32	Evaluation of long-term antinociceptive properties of stabilized hyaluronic acid preparation (NASHA) in an animal model of repetitive joint pain. Arthritis Research and Therapy, 2011, 13, R110.	1.6	31
33	Involvement of Peripheral and Spinal Tumor Necrosis Factor α in Spinal Cord Hyperexcitability During Knee Joint Inflammation in Rats. Arthritis and Rheumatology, 2014, 66, 599-609.	2.9	31
34	Impact of Diabetes Mellitus on Knee Osteoarthritis Pain and Physical and Mental Status: Data From the Osteoarthritis Initiative. Arthritis Care and Research, 2021, 73, 540-548.	1.5	21
35	Spinal mechanisms contributing to joint pain. Novartis Foundation Symposium, 2004, 260, 4-22; discussion 22-7, 100-4, 277-9.	1.2	20
36	Effects of interleukin-1ß on cortical spreading depolarization and cerebral vasculature. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1791-1802.	2.4	19

HANS-GEORG SCHAIBLE

#	Article	IF	CITATIONS
37	Osteoarthritis pain. Recent advances and controversies. Current Opinion in Supportive and Palliative Care, 2018, 12, 148-153.	0.5	19
38	Longâ€Lasting Activation of the Transcription Factor CREB in Sensory Neurons by Interleukinâ€1β During Antigenâ€Induced Arthritis in Rats: A Mechanism of Persistent Arthritis Pain?. Arthritis and Rheumatology, 2016, 68, 532-541.	2.9	17
39	Transient Receptor Potential vanilloid 4 ion channel in C-fibres is involved in mechanonociception of the normal and inflamed joint. Scientific Reports, 2019, 9, 10928.	1.6	17
40	Contribution of Inflammation and Bone Destruction to Pain in Arthritis: A Study in Murine Glucoseâ€6â€₽hosphate Isomerase–Induced Arthritis. Arthritis and Rheumatology, 2019, 71, 2016-2026.	2.9	15
41	Emerging Concepts of Pain Therapy Based on Neuronal Mechanisms. Handbook of Experimental Pharmacology, 2015, 227, 1-14.	0.9	13
42	Antigen-induced arthritis in rats is associated with increased growth-associated proteinÂ43–positive intraepidermal nerve fibres remote from the joint. Arthritis Research and Therapy, 2015, 17, 299.	1.6	11
43	Gain-of-function mutation in SCN11A causes itch and affects neurogenic inflammation and muscle function in Scn11a+/L799P mice. PLoS ONE, 2020, 15, e0237101.	1.1	10
44	The potential of substance P to initiate and perpetuate cortical spreading depression (CSD) in rat in vivo. Scientific Reports, 2018, 8, 17656.	1.6	8
45	Spinal interleukinâ€1β induces mechanical spinal hyperexcitability in rats: Interactions and redundancies with TNF and ILâ€6. Journal of Neurochemistry, 2021, 158, 898-911.	2.1	8
46	Pain-related behaviors associated with persistence of mechanical hyperalgesia after antigen-induced arthritis in rats. Pain, 2020, 161, 1571-1583.	2.0	7
47	Does chloride channel accessory 3 have a role in arthritis pain? A study on murine antigen-induced arthritis. Neuroscience Letters, 2014, 576, 40-44.	1.0	5
48	A Promising New Approach for the Treatment of Inflammatory Pain: Transfer of Stem Cell-Derived Tyrosine Hydroxylase-Positive Cells. NeuroImmunoModulation, 2018, 25, 225-237.	0.9	4
49	Spreading depression (SD) waves in the brainstem can be elicited after blockade of potassium channels – evidence for the role of extracellular potassium ions as a driving force?. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S438-S438.	2.4	0
50	Joint Pain. , 2020, , 571-591.		0
51	The role of neuroimmune interactions in musculoskeletal pain. Neuroforum, 2022, 28, 77-84.	0.2	0