List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4649483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved functional recovery of rat transected spinal cord by peptide-grafted PNIPAM based hydrogel. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112220.	2.5	13
2	Oriented nanofibrous P(MMD-co-LA)/Deferoxamine nerve scaffold facilitates peripheral nerve regeneration by regulating macrophage phenotype and revascularization. Biomaterials, 2022, 280, 121288.	5.7	46
3	GSH/enzyme-responsive 2-sulfonyl-1-methylimidazole prodrug for enhanced transdermal drug delivery and therapeutic efficacy against hyperthyroidis. International Journal of Pharmaceutics, 2022, 617, 121600.	2.6	2
4	Citric acid crossâ€linked chitosan for inhibiting oxidative stress after nerve injury. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 2231-2240.	1.6	8
5	Recent progress of nanomedicine in secreted phospholipase A2 as a potential therapeutic target. Journal of Materials Chemistry B, 2022, 10, 7349-7360.	2.9	8
6	Iron oxide nanoparticles with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. International Journal of Energy Production and Management, 2022, 9, .	1.9	21
7	Mesoporous hollow Fe ₃ O ₄ nanoparticles regulate the behavior of neuro-associated cells through induction of macrophage polarization in an alternating magnetic field. Journal of Materials Chemistry B, 2022, 10, 5633-5643.	2.9	7
8	Citrate regulates extracellular matrix mineralization during osteoblast differentiation in vitro. Journal of Inorganic Biochemistry, 2021, 214, 111269.	1.5	9
9	Effects of bioactive strontium-substituted hydroxyapatite on osseointegration of polyethylene terephthalate artificial ligaments. Journal of Materials Chemistry B, 2021, 9, 6600-6613.	2.9	14
10	Construction of macroporous magnesium phosphate-based bone cement with sustained drug release. Materials and Design, 2021, 200, 109466.	3.3	19
11	Poly-ε-caprolactone/Whitlockite Electrospun Bionic Membrane with an Osteogenic–Angiogenic Coupling Effect for Periosteal Regeneration. ACS Biomaterials Science and Engineering, 2021, 7, 3321-3331.	2.6	18
12	Vancomycin Hydrochloride Loaded Hydroxyapatite Mesoporous Microspheres with Micro/Nano Surface Structure to Increase Osteogenic Differentiation and Antibacterial Ability. Journal of Biomedical Nanotechnology, 2021, 17, 1668-1678.	0.5	3
13	Porous PLGA-PEG nerve conduit decorated with oriented electrospun chitosan-RGD nanofibre. Journal of Materials Research and Technology, 2021, 15, 86-98.	2.6	2
14	3D printed tricalcium phosphate-bioglass scaffold with gyroid structure enhance bone ingrowth in challenging bone defect treatment. Applied Materials Today, 2021, 25, 101166.	2.3	24
15	Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioactive Materials, 2021, 6, 4830-4855.	8.6	139
16	Mesoporous polydopamine-coated hydroxyapatite nano-composites for ROS-triggered nitric oxide-enhanced photothermal therapy of osteosarcoma. Journal of Materials Chemistry B, 2021, 9, 7401-7408.	2.9	21
17	A chitosan based scaffold with enhanced mechanical and biocompatible performance for biomedical applications. Polymer Degradation and Stability, 2020, 181, 109322.	2.7	21
18	Enhanced proliferation and differentiation of neural stem cells by peptide-containing temperature-sensitive hydrogel scaffold. Materials Science and Engineering C, 2020, 116, 111258.	3.8	15

#	Article	IF	CITATIONS
19	The antibacterial and antibiofilm activities of mesoporous hollow Fe ₃ O ₄ nanoparticles in an alternating magnetic field. Biomaterials Science, 2020, 8, 4492-4507.	2.6	33
20	An injectable bioactive magnesium phosphate cement incorporating carboxymethyl chitosan for bone regeneration. International Journal of Biological Macromolecules, 2020, 160, 101-111.	3.6	41
21	Magnesium Calcium Phosphate Cement Incorporating Citrate for Vascularized Bone Regeneration. ACS Biomaterials Science and Engineering, 2020, 6, 6299-6308.	2.6	16
22	A New Type of Nanogel Carrier based on Mixed Pluronic Loaded with Low-Dose Antitumor Drugs. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 960-967.	0.4	3
23	Citric acid modification of a polymer exhibits antioxidant and antiâ€inflammatory properties in stem cells and tissues. Journal of Biomedical Materials Research - Part A, 2019, 107, 2414-2424.	2.1	27
24	3D printing of bioglass-reinforced β-TCP porous bioceramic scaffolds. Journal of Materials Science, 2019, 54, 10437-10446.	1.7	36
25	Citric acid enhances the physical properties, cytocompatibility and osteogenesis of magnesium calcium phosphate cement. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 94, 42-50.	1.5	53
26	Citrate reduced oxidative damage in stem cells by regulating cellular redox signaling pathways and represent a potential treatment for oxidative stress-induced diseases. Redox Biology, 2019, 21, 101057.	3.9	25
27	Magnesium phosphate based cement with improved setting, strength and cytocompatibility properties by adding Ca(H2PO4)2·H2O and citric acid. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 229-236.	1.5	38
28	Electrospun preparation and biological properties in vitro of polyvinyl alcohol/sodium alginate/nano-hydroxyapatite composite fiber membrane. Colloids and Surfaces B: Biointerfaces, 2019, 173, 171-177.	2.5	46
29	Magnetically targeted co-delivery of hydrophilic and hydrophobic drugs with hollow mesoporous ferrite nanoparticles. RSC Advances, 2018, 8, 15326-15335.	1.7	9
30	Nondegradable magnetic poly (carbonate urethane) microspheres with good shape memory as a proposed material for vascular embolization. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 82, 9-17.	1.5	14
31	Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing. Carbohydrate Polymers, 2018, 197, 292-304.	5.1	162
32	Synthesis, Characterization of Nano- <i>\hat{l}^2</i> -Tricalcium Phosphate and the Inhibition on Hepatocellular Carcinoma Cells. Journal of Nanomaterials, 2018, 2018, 1-7.	1.5	4
33	Painful Terminal Neuroma Prevention by Capping PRGD/PDLLA Conduit in Rat Sciatic Nerves. Advanced Science, 2018, 5, 1700876.	5.6	28
34	The effect of different hydroxyapatite microparticles on the osteogenic differentiation of MC3T3-E1 preosteoblasts. Journal of Materials Chemistry B, 2018, 6, 5234-5242.	2.9	18
35	The Synthesis of Size-Adjustable Superparamagnetism Fe3O4 Hollow Microspheres. Nanoscale Research Letters, 2017, 12, 234.	3.1	21
36	Synthesis, mechanical properties and biocompatibility of novel biodegradable Poly(amide-imide)s for spinal implant. Polymer Degradation and Stability, 2017, 135, 85-98.	2.7	7

#	Article	IF	CITATIONS
37	Ultrasonically assisted preparation of poly(acrylic acid)/calcium phosphate hybrid nanogels as pH-responsive drug carriers. Materials Science and Engineering C, 2017, 80, 688-697.	3.8	28
38	Drug-Loaded Polymeric Nanoparticles for Cancer Stem Cell Targeting. Frontiers in Pharmacology, 2017, 8, 51.	1.6	59
39	A Highly Hydrophilic and Biodegradable Novel Poly(amide-imide) for Biomedical Applications. Polymers, 2016, 8, 441.	2.0	7
40	Degradation characteristics, cell viability and host tissue responses of PDLLA-based scaffold with PRGD and β-TCP nanoparticles incorporation. International Journal of Energy Production and Management, 2016, 3, 159-166.	1.9	12
41	Synthesis of magnetic particles with well-defined living polymeric chains via combination of RAFT polymerization and thiol-ene click chemistry. Journal of Polymer Research, 2016, 23, 1.	1.2	8
42	Preparation and characterization of a degradable magnesium phosphate bone cement. International Journal of Energy Production and Management, 2016, 3, 231-237.	1.9	27
43	Micro-Nanostructured Polyaniline Assembled in Cellulose Matrix via Interfacial Polymerization for Applications in Nerve Regeneration. ACS Applied Materials & Interfaces, 2016, 8, 17090-17097.	4.0	117
44	Synthesis and characterization of shape-memory poly carbonate urethane microspheres for future vascular embolization. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1248-1261.	1.9	11
45	Rare Earth Doped Apatite Nanomaterials for Biological Application. Journal of Nanomaterials, 2015, 2015, 1-6.	1.5	31
46	Different Inhibitory Effect and Mechanism of Hydroxyapatite Nanoparticles on Normal Cells and Cancer Cells In Vitro and In Vivo. Scientific Reports, 2014, 4, 7134.	1.6	139
47	PDLLA/PRGD/βâ€TCP conduits build the neurotrophinâ€rich microenvironment suppressing the oxidative stress and promoting the sciatic nerve regeneration. Journal of Biomedical Materials Research - Part A, 2014, 102, 3734-3743.	2.1	25
48	Preparation of nano-TiO2 by liquid hydrolysis and characterization of its antibacterial activity. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 407-409.	0.4	5
49	RGD gifted PDLLA-PRGD conduits promotes the sciatic nerve regeneration. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 620-625.	0.4	0
50	Synthesis, characterization and biological evaluation of poly [LA-co-(Glc-alt-Lys)] for nerve regeneration scaffold. Frontiers of Materials Science, 2014, 8, 95-101.	1.1	4
51	Nanocomposite Hydrogels with High Mechanical Strength and High Swelling Ratio by RAFT Polymerization. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 10-16.	1.8	13
52	Preparation and drug-release behavior of β-TCP ceramics drug carrier in vitro. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 1058-1060.	0.4	0
53	Effects of β-TCP ceramics on osteoblast cellular proliferating, mineralization and osteocalcin expression. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 107-109.	0.4	0
54	Effects of Î ² -TCP ceramics on intracellular Ca2+ concentration, mineralization of osteoblast and protein structure. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 1064-1067.	0.4	3

#	Article	IF	CITATIONS
55	Evaluation of a novel bioabsorbable PRGD/PDLLA/β-TCP/NGF composites in repair of peripheral nerves. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 409-414.	0.4	5
56	Effect of hydroxyapatite nanoparticles on K562 cells in vitro. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 222-224.	0.4	2
57	Effect of β-TCP ceramic on the total protein of osteoblasts. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 98-101.	0.4	3
58	Lath-like Structure of beta-Tricalcium Phosphate in Orthopedic Implants. Journal of the American Ceramic Society, 2005, 88, 1597-1599.	1.9	1