Aymé Spor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4649475/publications.pdf Version: 2024-02-01

AVMÃO SDOD

#	Article	IF	CITATIONS
1	Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4578-4585.	7.1	2,108
2	Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell, 2012, 150, 470-480.	28.9	1,603
3	Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the United States of America, 2013, 110, 6548-6553.	7.1	1,594
4	Unravelling the effects of the environment and host genotype on the gut microbiome. Nature Reviews Microbiology, 2011, 9, 279-290.	28.6	1,305
5	Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4592-4598.	7.1	943
6	Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nature Biotechnology, 2011, 29, 415-420.	17.5	608
7	Loss in microbial diversity affects nitrogen cycling in soil. ISME Journal, 2013, 7, 1609-1619.	9.8	603
8	Recently identified microbial guild mediates soil N2O sink capacity. Nature Climate Change, 2014, 4, 801-805.	18.8	364
9	Responses of Gut Microbiota to Diet Composition and Weight Loss in Lean and Obese Mice. Obesity, 2012, 20, 738-747.	3.0	352
10	N2O production, a widespread trait in fungi. Scientific Reports, 2015, 5, 9697.	3.3	190
11	Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biology and Biochemistry, 2015, 90, 204-213.	8.8	159
12	Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME Journal, 2017, 11, 272-283.	9.8	135
13	Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nature Food, 2021, 2, 28-37.	14.0	120
14	The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system. Frontiers in Microbiology, 2015, 6, 971.	3.5	114
15	Peaks of in situ N ₂ O emissions are influenced by N ₂ Oâ€producing and reducing microbial communities across arable soils. Global Change Biology, 2018, 24, 360-370.	9.5	109
16	Non-denitrifying nitrous oxide-reducing bacteria - An effective N2O sink in soil. Soil Biology and Biochemistry, 2016, 103, 376-379.	8.8	97
17	Biotic and Abiotic Soil Properties Influence Survival of Listeria monocytogenes in Soil. PLoS ONE, 2013, 8, e75969.	2.5	97
18	Depth matters: effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. ISME Journal, 2018, 12, 1061-1071.	9.8	94

Aymé Spor

#	Article	IF	CITATIONS
19	Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome, 2020, 8, 52.	11.1	82
20	Unraveling negative biotic interactions determining soil microbial community assembly and functioning. ISME Journal, 2022, 16, 296-306.	9.8	80
21	The Transplantation of ï‰3 PUFA–Altered Gut Microbiota of fat-1 Mice to Wild-Type Littermates Prevents Obesity and Associated Metabolic Disorders. Diabetes, 2018, 67, 1512-1523.	0.6	65
22	Cover Crop Management Practices Rather Than Composition of Cover Crop Mixtures Affect Bacterial Communities in No-Till Agroecosystems. Frontiers in Microbiology, 2019, 10, 1618.	3.5	64
23	Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts. Nature Ecology and Evolution, 2022, 6, 1145-1154.	7.8	54
24	Land-use intensification differentially affects bacterial, fungal and protist communities and decreases microbiome network complexity. Environmental Microbiomes, 2022, 17, 1.	5.0	48
25	Niche-driven evolution of metabolic and life-history strategies in natural and domesticated populations of Saccharomyces cerevisiae. BMC Evolutionary Biology, 2009, 9, 296.	3.2	47
26	PHENOTYPIC AND GENOTYPIC CONVERGENCES ARE INFLUENCED BY HISTORICAL CONTINGENCY AND ENVIRONMENT IN YEAST. Evolution; International Journal of Organic Evolution, 2014, 68, 772-790.	2.3	46
27	Lab to Field Assessment of the Ecotoxicological Impact of Chlorpyrifos, Isoproturon, or Tebuconazole on the Diversity and Composition of the Soil Bacterial Community. Frontiers in Microbiology, 2018, 9, 1412.	3.5	46
28	Domestication-driven changes in plant traits associated with changes in the assembly of the rhizosphere microbiota in tetraploid wheat. Scientific Reports, 2020, 10, 12234.	3.3	38
29	A core microbiota of the plant-earthworm interaction conserved across soils. Soil Biology and Biochemistry, 2020, 144, 107754.	8.8	34
30	Rubber plantation ageing controls soil biodiversity after land conversion from cassava. Agriculture, Ecosystems and Environment, 2018, 257, 92-102.	5.3	32
31	"Ant―and "Grasshopper―Life-History Strategies in Saccharomyces cerevisiae. PLoS ONE, 2008, 3, e157	79.2.5	32
32	Distribution of bacteria and nitrogen-cycling microbial communities along constructed Technosol depth-profiles. Journal of Hazardous Materials, 2012, 231-232, 88-97.	12.4	28
33	Assessment of the ecotoxicological impact of natural and synthetic β-triketone herbicides on the diversity and activity of the soil bacterial community using omic approaches. Science of the Total Environment, 2019, 651, 241-249.	8.0	28
34	Effect of the Reproduction Method in an Artificial Selection Experiment at the Community Level. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	26
35	Labour sharing promotes coexistence in atrazine degrading bacterial communities. Scientific Reports, 2019, 9, 18363.	3.3	25
36	Streptomyces strains modulate dynamics of soil bacterial communities and their efficacy in disease suppression caused by Phytophthora capsici. Scientific Reports, 2021, 11, 9317.	3.3	25

Aymé Spor

#	Article	IF	CITATIONS
37	Compounded Disturbance Chronology Modulates the Resilience of Soil Microbial Communities and N-Cycle Related Functions. Frontiers in Microbiology, 2018, 9, 2721.	3.5	23
38	Potential of preventive bioremediation to reduce environmental contamination by pesticides in an agricultural context: A case study with the herbicide 2,4-D. Journal of Hazardous Materials, 2021, 416, 125740.	12.4	23
39	Mapping field spatial distribution patterns of isoproturon-mineralizing activity over a three-year winter wheat/rape seed/barley rotation. Chemosphere, 2013, 90, 2499-2511.	8.2	20
40	Artificial selection of stable rhizosphere microbiota leads to heritable plant phenotype changes. Ecology Letters, 2022, 25, 189-201.	6.4	20
41	Habitat Disturbances Modulate the Barrier Effect of Resident Soil Microbiota on Listeria monocytogenes Invasion Success. Frontiers in Microbiology, 2020, 11, 927.	3.5	14
42	Hierarchical Bayesian Modelling for Saccharomyces cerevisiae population dynamics. International Journal of Food Microbiology, 2010, 142, 25-35.	4.7	13
43	Switch between Life History Strategies Due to Changes in Glycolytic Enzyme Gene Dosage in <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2011, 77, 452-459.	3.1	13
44	Antibiotrophy: Key Function for Antibiotic-Resistant Bacteria to Colonize Soils—Case of Sulfamethazine-Degrading Microbacterium sp. C448. Frontiers in Microbiology, 2021, 12, 643087.	3.5	8
45	Complete Genome Sequences of Four Atrazine-Degrading Bacterial Strains, <i>Pseudomonas</i> sp. Strain ADPe, <i>Arthrobacter</i> sp. Strain TES, <i>Variovorax</i> sp. Strain 38R, and <i>Chelatobacter</i> sp. Strain SR38. Microbiology Resource Announcements, 2021, 10, .	0.6	8
46	Soil microbes drive the effect of plant species and genotypic diversity interaction on productivity Plant and Soil, 2021, 467, 165.	3.7	7
47	Assessing the Effects of β-Triketone Herbicides on the Soil Bacterial and hppd Communities: A Lab-to-Field Experiment. Frontiers in Microbiology, 2020, 11, 610298.	3.5	5
48	Community diversity determines the evolution of synthetic bacterial communities under artificial selection. Evolution; International Journal of Organic Evolution, 2022, 76, 1883-1895.	2.3	5
49	Design of a degenerate primer pair to target a bacterial functional community: The hppd bacterial gene coding for the enzyme targeted by herbicides, a study case. Journal of Microbiological Methods, 2020, 170, 105839.	1.6	4
50	Assessment of the resilience and resistance of remediated soils using denitrification as model process. Journal of Soils and Sediments, 2014, 14, 178-182.	3.0	3
51	Draft Genome Sequence of <i>Pseudomonas</i> sp. Strain ADP, a Bacterial Model for Studying the Degradation of the Herbicide Atrazine. Genome Announcements, 2016, 4, .	0.8	3
52	Impact of repeated irrigation of lettuce cultures with municipal wastewater on the diversity and composition of root-associated arbuscular mycorrhizal fungi. Biology and Fertility of Soils, 0, , 1.	4.3	0