Moshe Inbar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4649472/publications.pdf

Version: 2024-02-01

81900 114465 4,638 128 39 63 citations g-index h-index papers 132 132 132 4479 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biotype-dependent secondary symbiont communities in sympatric populations of $\langle i \rangle$ Bemisia tabaci $\langle i \rangle$. Bulletin of Entomological Research, 2007, 97, 407-413.	1.0	251
2	Horizontal transmission of the insect symbiont <i>Rickettsia</i> is plant-mediated. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1791-1796.	2.6	221
3	Plant-Mediated Interactions Between Whiteflies, Herbivores, and Natural Enemies. Annual Review of Entomology, 2008, 53, 431-448.	11.8	202
4	The presence of <i>Rickettsia</i> is associated with increased susceptibility of <i>Bemisia tabaci</i> (Homoptera: Aleyrodidae) to insecticides. Pest Management Science, 2008, 64, 789-792.	3.4	175
5	Plant coloration undermines herbivorous insect camouflage. BioEssays, 2004, 26, 1126-1130.	2.5	170
6	Suitability of stressed and vigorous plants to various insect herbivores. Oikos, 2001, 94, 228-235.	2.7	165
7	Interspecific Competition among Phloem-Feeding Insects Mediated by Induced Host-Plant Sinks. Ecology, 1995, 76, 1506-1515.	3.2	147
8	Feeding Responses of Free-flying Honeybees to Secondary Compounds Mimicking Floral Nectars. Journal of Chemical Ecology, 2005, 31, 2791-2804.	1.8	145
9	Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Archives of Insect Biochemistry and Physiology, 2002, 51, 151-169.	1.5	109
10	Almost There: Transmission Routes of Bacterial Symbionts between Trophic Levels. PLoS ONE, 2009, 4, e4767.	2.5	108
11	Elicitors of Plant Defensive Systems Reduce Insect Densities and Disease Incidence. Journal of Chemical Ecology, 1998, 24, 135-149.	1.8	105
12	Fire impacts on soil nutrients and soil erosion in a Mediterranean pine forest plantation. Catena, 1993, 20, 129-139.	5.0	103
13	Palaeoenvironments and Cultural Sequence of the Florisbad Middle Stone Age Hominid Site, South Africa. Journal of Archaeological Science, 1999, 26, 1409-1425.	2.4	103
14	The effects of slope orientation on plant growth, developmental instability and susceptibility to herbivores. Journal of Arid Environments, 2003, 55, 405-416.	2.4	100
15	Title is missing!. Journal of Chemical Ecology, 1999, 25, 1961-1979.	1.8	98
16	The evolution of host plant manipulation by insects: molecular and ecological evidence from gall-forming aphids on Pistacia. Molecular Phylogenetics and Evolution, 2004, 32, 504-511.	2.7	77
17	Defensive ant, aphid and caterpillar mimicry in plants?. Biological Journal of the Linnean Society, 2002, 77, 393-398.	1.6	76
18	Erosion Processes in High Mountain Agricultural Terraces in Peru. Mountain Research and Development, 2000, 20, 72-79.	1.0	74

#	Article	IF	CITATIONS
19	Why do many galls have conspicuous colors? A new hypothesis. Arthropod-Plant Interactions, 2010, 4, 1-6.	1.1	63
20	Rickettsia †În' and †Out': Two Different Localization Patterns of a Bacterial Symbiont in the Same Inse Species. PLoS ONE, 2011, 6, e21096.	ect 2.5	60
21	Gall volatiles defend aphids against a browsing mammal. BMC Evolutionary Biology, 2013, 13, 193.	3.2	60
22	Infiltration processes and flow rates in developed karst vadose zone using tracers in cave drips. Earth Surface Processes and Landforms, 2010, 35, 1682-1693.	2.5	56
23	Archaeological horizons and fluvial processes at the Lower Paleolithic open-air site of Revadim (Israel) \hat{a}^- †. Journal of Human Evolution, 2011, 60, 508-522.	2.6	55
24	Effects of Sessile Whitefly Nymphs (Homoptera: Aleyrodidae) on Leaf-Chewing Larvae (Lepidoptera:) Tj ETQq0 0 C) rgBT /Ov £.4	erlock 10 Tf
25	Induction of systemic acquired resistance in cotton by BTH has a negligible effect on phytophagous insects. Entomologia Experimentalis Et Applicata, 2001, 99, 65-70.	1.4	54
26	Rates of fluvial erosion in basins with a Mediterranean type climate. Catena, 1992, 19, 393-409.	5.0	52
27	Effect of geminivirus infection and Bemisia infestation on accumulation of pathogenesis-related proteins in tomato. Archives of Insect Biochemistry and Physiology, 2002, 49, 203-214.	1.5	51
28	Shoreline sensitivity to oil spills, the Mediterranean coast of Israel: Assessment and analysis. Ocean and Coastal Management, 2007, 50, 24-34.	4.4	51
29	Plant-feeding and non-plant feeding phytoseiids: differences in behavior and cheliceral morphology. Experimental and Applied Acarology, 2012, 58, 341-357.	1.6	49
30	The Effects of Nectar–Nicotine on Colony Fitness of Caged Honeybees. Journal of Chemical Ecology, 2006, 32, 49-59.	1.8	48
31	Host Location by Apterous Aphids After Escape Dropping from the Plant. Journal of Insect Behavior, 2006, 19, 143-153.	0.7	48
32	The Role of Fire Disturbance on Runoff and Erosion Processes – a Longâ€Term Approach, Mt. Carmel Case Study, Israel. Geographical Research, 2009, 47, 46-56.	1.8	47
33	Mammalian herbivore breath alerts aphids to flee host plant. Current Biology, 2010, 20, R628-R629.	3.9	47
34	Conspicuous and aposematic spines in the animal kingdom. Die Naturwissenschaften, 2005, 92, 170-172.	1.6	46
35	Holocene yardangs in volcanic terrains in the southern Andes, Argentina. Earth Surface Processes and Landforms, 2001, 26, 657-666.	2.5	45
36	Morphometric and morphological development of Holocene cinder cones: A field and remote sensing study in the Tolbachik volcanic field, Kamchatka. Journal of Volcanology and Geothermal Research, 2011, 201, 301-311.	2.1	45

#	Article	IF	CITATIONS
37	Assessments of Fitness Effects by the Facultative Symbiont <i>Rickettsia</i> in the Sweetpotato Whitefly (Hemiptera: Aleyrodidae). Annals of the Entomological Society of America, 2009, 102, 413-418.	2.5	44
38	Colour patterns in vegetative parts of plants deserve more research attention. Trends in Plant Science, 2002, 7, 59-60.	8.8	43
39	Short-term changes in the magnitude, frequency and temporal distribution of floods in the Eastern Mediterranean region during the last 45Âyears — Nahal Oren, Mt. Carmel, Israel. Geomorphology, 2007, 84, 181-191.	2.6	43
40	Estimating the economic value of viewing griffon vultures Gyps fulvus: a Travel Cost Model study at Gamla Nature Reserve, Israel. Oryx, 2005, 39, 429.	1.0	42
41	The geomorphological evolution of the Paricutin cone and lava flows, Mexico, 1943–1990. Geomorphology, 1994, 9, 57-76.	2.6	41
42	Spotted Fever Group Rickettsiae in Ticks Collected from Wild Animals in Israel. American Journal of Tropical Medicine and Hygiene, 2011, 85, 919-923.	1.4	41
43	Phloem-Feeding Specialists Sharing a Host Tree: Resource Partitioning Minimizes Interference Competition among Galling Aphid Species. Oikos, 1995, 73, 109.	2.7	39
44	Mid-Holocene macrofossil-bearing raised marine beaches at Potter Peninsula, King George Island, South Shetland Islands. Antarctic Science, 2002, 14, 263-269.	0.9	38
45	Adaptive aerial righting during the escape dropping of wingless pea aphids. Current Biology, 2013, 23, R102-R103.	3.9	32
46	Pollen on-twine for food provisioning and oviposition of predatory mites in protected crops. BioControl, 2014, 59, 307-317.	2.0	32
47	Competition, territoriality and maternal defense in a gall-forming aphid. Ethology Ecology and Evolution, 1998, 10, 159-170.	1.4	30
48	Bionomics of Encarsia scapeata Rivnay (Hymenoptera: Aphelinidae), tritrophic relationships and host-induced diapause. Biological Control, 2009, 49, 201-206.	3.0	29
49	Direct consumptive interactions between mammalian herbivores and plant-dwelling invertebrates: prevalence, significance, and prospectus. Oecologia, 2017, 183, 347-352.	2.0	28
50	Phenotypic plasticity and gene diversity in Pistacia lentiscus L. along environmental gradients in Israel. Tree Genetics and Genomes, 2008, 4, 777-785.	1.6	27
51	Avoiding incidental predation by mammalian herbivores: accurate detection and efficient response in aphids. Die Naturwissenschaften, 2011, 98, 731-738.	1.6	26
52	The Mono - and Sesquiterpene Content of Aphid-Induced Galls on Pistacia palaestina is Not a Simple Reflection of Their Composition in Intact Leaves. Journal of Chemical Ecology, 2014, 40, 632-642.	1.8	26
53	Molecular Evidence for (i>Anaplasma phagocytophilum (i>in Israel. Emerging Infectious Diseases, 2007, 13, 1411-1412.	4.3	24
54	Distinct antimicrobial activities in aphid galls onPistacia atlantica. Plant Signaling and Behavior, 2011, 6, 2008-2012.	2.4	23

#	Article	IF	Citations
55	Aphids link different sensory modalities to accurately interpret ambiguous cues. Behavioral Ecology, 2014, 25, 627-632.	2.2	23
56	Morphometric and geomorphic approaches for assessment of tectonic activity, Dead Sea Rift (Israel). Geomorphology, 2008, 102, 93-104.	2.6	22
57	Walking aphids can partake in within-field dispersal to distant plants. Basic and Applied Ecology, 2015, 16, 162-171.	2.7	22
58	Differences in Monoterpene Biosynthesis and Accumulation in Pistacia palaestina Leaves and Aphid-Induced Galls. Journal of Chemical Ecology, 2017, 43, 143-152.	1.8	20
59	Biosynthesis of linalyl acetate and other terpenes in lemon mint (<i>Mentha aquatica</i>) Tj ETQq1 1 56, 233-244.	0.784314 0.5	rgBT /Overlo
60	When Herbivores Eat Predators: Predatory Insects Effectively Avoid Incidental Ingestion by Mammalian Herbivores. PLoS ONE, 2013, 8, e56748.	2.5	19
61	Plant cell piercing by a predatory mite: evidence and implications. Experimental and Applied Acarology, 2015, 65, 181-193.	1.6	19
62	Cascading effects on bacterial communities: cattle grazing causes a shift in the microbiome of a herbivorous caterpillar. ISME Journal, 2018, 12, 1952-1963.	9.8	18
63	Young Aphids Avoid Erroneous Dropping when Evading Mammalian Herbivores by Combining Input from Two Sensory Modalities. PLoS ONE, 2012, 7, e32706.	2.5	18
64	Developing a large-scale dataset of flood fatalities for territories in the Euro-Mediterranean region, FFEM-DB. Scientific Data, 2022, 9, 166.	5.3	18
65	Feeding activity and dietary composition of roe deer at the southern edge of their range. European Journal of Wildlife Research, 2010, 56, 1-9.	1.4	17
66	Modification of tree architecture by a gall-forming aphid. Trees - Structure and Function, 2010, 24, 13-18.	1.9	17
67	The role of onion-associated fungi in bulb mite infestation and damage to onion seedlings. Experimental and Applied Acarology, 2014, 62, 437-448.	1.6	16
68	Return Flight of Sexuparae of Galling Aphids to Their Primary Host Trees: Implications for Differential Herbivory and Gall (Aphidoidea: Pemphigidae: Fordinae) Abundance. Annals of the Entomological Society of America, 1997, 90, 341-350.	2.5	15
69	Water requirements as a bottleneck in the reintroduction of European roe deer to the southern edge of its range. Canadian Journal of Zoology, 2007, 85, 1182-1192.	1.0	15
70	Hydrologic classification of cave drips in a Mediterranean climate, based on hydrograph separation and flow mechanisms. Israel Journal of Earth Sciences, 2008, 57, 291-310.	0.3	15
71	Economic analysis of feeding stations as a means to preserve an endangered species: The case of Griffon Vulture (Gyps fulvus) in Israel. Journal for Nature Conservation, 2009, 17, 199-211.	1.8	14
72	Ectoparasites on Reintroduced Roe Deer Capreolus capreolus in Israel. Journal of Wildlife Diseases, 2008, 44, 693-696.	0.8	13

#	Article	IF	Citations
73	Habitat fragmentation alters predator satiation of acorns. Journal of Plant Ecology, 2017, 10, 67-73.	2.3	13
74	The effects of a windborne pollenâ€provisioning cover crop on the phytoseiid community in citrus orchards in Israel. Pest Management Science, 2019, 75, 405-412.	3.4	13
75	Characterization of the symbiontRickettsiain the mirid bugNesidiocoris tenuis(Reuter) (Heteroptera:) Tj ETQq $1\ 1$	0.784314 1.0	1 rgBT /Overlo
76	Alkaloid chemodiversity in Mandragora spp. is associated with loss-of-functionality of MoH6H, a hyoscyamine $6\hat{l}^2$ -hydroxylase gene. Plant Science, 2019, 283, 301-310.	3.6	12
77	Hydrological and sedimentological changes following the 2010-forest fire in the Nahal Oren Basin, Mt. Carmel Israel–a comparison to pre-fire natural rates. Catena, 2021, 196, 104891.	5.0	12
78	CHARACTERIZATION OF ROAD ACCIDENTS IN ISRAEL INVOLVING LARGE MAMMALS. Israel Journal of Zoology, 2002, 48, 197-206.	0.2	11
79	Gender-Related developmental instability and herbivory of Pistacia atlantica across a steep environmental gradient. Folia Geobotanica, 2007, 42, 401-410.	0.9	11
80	Morphometric measurements of cinder cones from digital elevation models of Tolbachik volcanic field, central Kamchatka. Canadian Journal of Remote Sensing, 2010, 36, 287-300.	2.4	11
81	The stimuli evoking the aerial-righting-posture of falling pea aphids. Journal of Experimental Biology, 2014, 217, 3504-11.	1.7	11
82	Immediate and long-term facilitative effects of cattle grazing on a polyphagous caterpillar. Agriculture, Ecosystems and Environment, 2018, 261, 45-53.	5. 3	11
83	Cost benefit analysis of conservation efforts to preserve an endangered species: The Griffon Vulture (Gyps fulvus) in Israel. Journal of Bioeconomics, 2010, 12, 55-70.	3.3	10
84	Red gall pigmentation: cytokinin stimulation is not everything. Arthropod-Plant Interactions, 2013, 7, 335-337.	1.1	10
85	How goats avoid ingesting noxious insects while feeding. Scientific Reports, 2017, 7, 14835.	3.3	10
86	Water Resource Planning and Development in the Northern Jordan Valley. Water International, 1984, 9, 18-25.	1.0	9
87	Fluvial Morphology and Streamflow on Deception Island, Antarctica. Geografiska Annaler, Series A: Physical Geography, 1995, 77, 221-230.	1.5	9
88	Patch size of gall-forming aphids: deme formation revisited. Population Ecology, 2012, 54, 135-144.	1.2	9
89	Anticipatory and Reactive Crouching of Pea Aphids in Response to Environmental Perturbations. Environmental Entomology, 2014, 43, 1319-1326.	1.4	9
90	Turning in midâ€air allows aphids that flee the plant to avoid reaching the risky ground. Integrative Zoology, 2017, 12, 409-420.	2.6	9

#	Article	IF	CITATIONS
91	Phytoecdysteroid and Clerodane Content in Three Wild <i>Ajuga</i> Species in Israel. ACS Omega, 2019, 4, 2369-2376.	3.5	9
92	EFFECT OF DAMS ON MOUNTAINOUS BEDROCK RIVERS. Physical Geography, 1990, 11, 305-319.	1.4	8
93	A Geomorphic and Environmental Evaluation of the Hula Drainage Project, Israel. Geographical Research, 2002, 40, 155-166.	0.6	8
94	Handâ€rearing Roe deer <i>Capreolus capreolus</i> : practice and research potential. International Zoo Yearbook, 2007, 41, 183-193.	0.9	8
95	Genetic structure of a galling aphid Slavum wertheimae and its host tree Pistacia atlantica across an Irano-Turanian distribution: from fragmentation to speciation?. Tree Genetics and Genomes, 2012, 8, 811-820.	1.6	8
96	Wildfires in the eastern Mediterranean as a result of lightning activity – a change in the conventional knowledge. International Journal of Wildland Fire, 2016, 25, 592.	2.4	8
97	The oak gall wasps of Israel (Hymenoptera, Cynipidae, Cynipini)—diversity, distribution and life history. Zootaxa, 2018, 4521, 451-498.	0.5	8
98	Differences in escape behavior between pea aphid biotypes reflect their host plants' palatability to mammalian herbivores. Basic and Applied Ecology, 2019, 34, 108-117.	2.7	8
99	Measurement of fluvial sediment transport compared with lacustrine sedimentation rates: the flow of the River Jordan into Lake Kinneret. Hydrological Sciences Journal, 1982, 27, 439-449.	2.6	7
100	Chapter 5 The influence of soil saturation on the stability of abandoned agricultural hillslope terraces under Mediterranean climatic conditions. Developments in Earth Surface Processes, 2005, 7, 69-86.	2.8	7
101	Activity of Ajuga iva Extracts Against the African Cotton Leafworm Spodoptera littoralis. Insects, 2020, 11, 726.	2.2	6
102	Revealing cryptic interactions between large mammalian herbivores and plantâ€dwelling arthropods via DNA metabarcoding. Ecology, 2022, 103, e03548.	3.2	6
103	Diapause and its regulation in the whitefly Trialeurodes lauri. Bulletin of Entomological Research, 2011, 101, 741-747.	1.0	5
104	Innate ability of goats to sense and avoid ingestion of noxious insects while feeding. Royal Society Open Science, 2019, 6, 181078.	2.4	5
105	Fluvial Morphology and Streamflow on Deception Island, Antarctica. Geografiska Annaler, Series A: Physical Geography, 1995, 77, 221.	1.5	5
106	Once again, insects worked it out first. Nature, 2001, 414, 147-148.	27.8	4
107	One hundred years of the rock fall triggered by the 1912 Acambay earthquake, Mexico. Zeitschrift Fýr Geomorphologie, 2012, 56, 495-505.	0.8	4
108	Lines, loops and spirals: an intraclonal continuum of host location behaviours in walking aphids. Animal Behaviour, 2017, 128, 5-11.	1.9	4

#	Article	IF	CITATIONS
109	Standing on the shoulders of giants: young aphids piggyback on adults when searching for a host plant. Frontiers in Zoology, 2018, 15, 49.	2.0	4
110	Conspicuous gall colors: a response to T. C. R. White. Arthropod-Plant Interactions, 2010, 4, 151-152.	1.1	3
111	Gall-forming aphids are protected (and benefit) from defoliating caterpillars: the role of plant-mediated mechanisms. Bmc Ecology and Evolution, 2021, 21, 124.	1.6	3
112	Mutualistic and Dependent Relationships with Other Organisms. , 2009, , 161-183.		3
113	Morphometric analysis of the Naftali Mountain front. Israel Journal of Earth Sciences, 2003, 52, 191-202.	0.3	3
114	Climatic and cultivar effects on phytoseiid species establishment and seasonal abundance on citrus. Acarologia, 2019, 59, 443-455.	0.6	3
115	Combining TCM and CVM of endangered species conservation programme: estimation of the marginal value of vultures (Gyps fulvus) in the presence of species–visitors interaction. , 2001, , 311-342.		2
116	The Evolution of Gall Traits in the Fordinae (Homoptera). , 2006, , 265-273.		2
117	Transcriptional up-regulation of host-specific terpene metabolism in aphid-induced galls of <i>Pistacia palaestina</i> . Journal of Experimental Botany, 2022, 73, 555-570.	4.8	2
118	Tropane alkaloid biosynthesis in Datura innoxia Mill. roots and their differential transport to shoots. Phytochemistry Letters, 2021, 43, 219-225.	1.2	2
119	Further Insights on the <i>Datura innoxia</i> Hyoscyamine 6 <i>l²</i> -Hydroxylase (DiH6H) Based on Biochemical Characterization and Molecular Modeling. American Journal of Plant Sciences, 2021, 12, 53-70.	0.8	2
120	Phylogeography and gene diversity of the gall-forming aphid <i>Aploneura lentisci</i> in the Mediterranean basin. Israel Journal of Plant Sciences, 2010, 58, 121-129.	0.5	2
121	Geomorphology. , 2014, , 69-77.		2
122	Large herbivores facilitate an insect herbivore by modifying plant community composition in a temperate grassland. Ecology and Evolution, 2021, 11, 16314-16326.	1.9	2
123	Preface land degradation — a scientific 21st century challenge for physical geography. Geografiska Annaler, Series A: Physical Geography, 2003, 85, 211-212.	1.5	0
124	Introduction: Honoring Professor Dan Gerling Israel Journal of Plant Sciences, 2010, 58, i-ii.	0.5	0
125	UV-induced citrus resistance to spider mites (Tetranychus urticae). Crop Protection, 2021, 144, 105580.	2.1	0
126	Social and Economic Background. , 2014, , 535-539.		0

#	Article	IF	CITATIONS
127	Importance of Drought Information in Monitoring and Assessing Land Degradation. , 2007, , 253-266.		o
128	The dynamics and the timeline of speciation in the gall-forming aphid Geoica spp. within and among Pistacia host tree species. Molecular Phylogenetics and Evolution, 2022, 174, 107549.	2.7	0