Woojin Scott Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4649462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomarker discovery and development for frontotemporal dementia and amyotrophic lateral sclerosis. Brain, 2022, 145, 1598-1609.	3.7	17
2	Sex-specific lipid dysregulation in the <i>Abca7</i> knockout mouse brain. Brain Communications, 2022, 4, .	1.5	4
3	Lipid pathway dysfunction is prevalent in patients with Parkinson's disease. Brain, 2022, 145, 3472-3487.	3.7	25
4	Comparison of Different Platform Immunoassays for the Measurement of Plasma Alpha-Synuclein in Parkinson's Disease Patients. Journal of Parkinson's Disease, 2021, 11, 1761-1772.	1.5	15
5	Alpha-synuclein activates the classical complement pathway and mediates complement-dependent cell toxicity. Journal of Neuroinflammation, 2021, 18, 177.	3.1	18
6	ATP-binding cassette transporters and neurodegenerative diseases. Essays in Biochemistry, 2021, 65, 1013-1024.	2.1	11
7	Glycoprotein Pathways Altered in Frontotemporal Dementia With Autoimmune Disease. Frontiers in Immunology, 2021, 12, 736260.	2.2	2
8	Increased VLCFA-lipids and ELOVL4 underlie neurodegeneration in frontotemporal dementia. Scientific Reports, 2021, 11, 21348.	1.6	11
9	Pathological manifestation of human endogenous retrovirus K in frontotemporal dementia. Communications Medicine, 2021, 1, .	1.9	14
10	Altered serum protein levels in frontotemporal dementia and amyotrophic lateral sclerosis indicate calcium and immunity dysregulation. Scientific Reports, 2020, 10, 13741.	1.6	26
11	Accelerated loss of hypoxia response in zebrafish with familial Alzheimer's disease-like mutation of presenilin 1. Human Molecular Genetics, 2020, 29, 2379-2394.	1.4	12
12	Uncovering pathophysiological changes in frontotemporal dementia using serum lipids. Scientific Reports, 2020, 10, 3640.	1.6	39
13	Arylsulfatase A, a genetic modifier of Parkinson's disease, is an α-synuclein chaperone. Brain, 2019, 142, 2845-2859.	3.7	44
14	Cross-examining candidate genes implicated in multiple system atrophy. Acta Neuropathologica Communications, 2019, 7, 117.	2.4	22
15	Coexisting Lewy body disease and clinical parkinsonism in frontotemporal lobar degeneration. Neurology, 2019, 92, e2472-e2482.	1.5	16
16	Structural heterogeneity of α-synuclein fibrils amplified from patient brain extracts. Nature Communications, 2019, 10, 5535.	5.8	153
17	Apolipoprotein D Upregulation in Alzheimer's Disease but Not Frontotemporal Dementia. Journal of Molecular Neuroscience, 2019, 67, 125-132.	1.1	29
18	Effect of Fluvoxamine on Amyloid-β Peptide Generation and Memory. Journal of Alzheimer's Disease, 2018, 62, 1777-1787.	1.2	12

WOOJIN SCOTT КІМ

#	Article	IF	CITATIONS
19	Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. Brain, 2018, 141, 521-534.	3.7	114
20	Recommendations of the Global Multiple System Atrophy Research Roadmap Meeting. Neurology, 2018, 90, 74-82.	1.5	23
21	Lipidomics Analysis of Behavioral Variant Frontotemporal Dementia: A Scope for Biomarker Development. Frontiers in Neurology, 2018, 9, 104.	1.1	36
22	Odor Enrichment Increases Hippocampal Neuron Numbers in Mouse. Experimental Neurobiology, 2018, 27, 94-102.	0.7	12
23	Predicting Development of Amyotrophic Lateral Sclerosis in Frontotemporal Dementia. Journal of Alzheimer's Disease, 2017, 58, 163-170.	1.2	17
24	Lipid Metabolism and Survival Across the Frontotemporal Dementia-Amyotrophic Lateral Sclerosis Spectrum: Relationships to Eating Behavior and Cognition. Journal of Alzheimer's Disease, 2017, 61, 773-783.	1.2	47
25	Deletion of Alzheimer's Disease Risk Gene ABCA7 Alters White Adipose Tissue Development and Leptin Levels. Journal of Alzheimer's Disease Reports, 2017, 1, 237-247.	1.2	4
26	α-Synuclein Regulates Neuronal Cholesterol Efflux. Molecules, 2017, 22, 1769.	1.7	29
27	Distinct TDP-43 inclusion morphologies in frontotemporal lobar degeneration with and without amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2017, 5, 76.	2.4	27
28	Role of the Long Non-Coding RNA MAPT-AS1 in Regulation of Microtubule Associated Protein Tau (MAPT) Expression in Parkinson's Disease. PLoS ONE, 2016, 11, e0157924.	1.1	68
29	Adult Neurogenesis and Gliogenesis: Possible Mechanisms for Neurorestoration. Experimental Neurobiology, 2016, 25, 103-112.	0.7	38
30	ABCA7 Mediates Phagocytic Clearance of Amyloid-β in the Brain. Journal of Alzheimer's Disease, 2016, 54, 569-584.	1.2	69
31	Animal modeling an oligodendrogliopathy – multiple system atrophy. Acta Neuropathologica Communications, 2016, 4, 12.	2.4	16
32	Early in vivo Effects of the Human Mutant Amyloid-β Protein Precursor (hAβPPSwInd) on the Mouse Olfactory Bulb. Journal of Alzheimer's Disease, 2015, 49, 443-457.	1.2	5
33	High expression of long intervening non-coding RNA OLMALINC in the human cortical white matter is associated with regulation of oligodendrocyte maturation. Molecular Brain, 2015, 8, 2.	1.3	25
34	Exploring Myelin Dysfunction in Multiple System Atrophy. Experimental Neurobiology, 2014, 23, 337-344.	0.7	33
35	ABCA5 Regulates Amyloid-β Peptide Production and is Associated with Alzheimer's Disease Neuropathology. Journal of Alzheimer's Disease, 2014, 43, 857-869.	1.2	40
36	Alpha-synuclein biology in Lewy body diseases. Alzheimer's Research and Therapy, 2014, 6, 73.	3.0	288

WOOJIN SCOTT КІМ

#	Article	IF	CITATIONS
37	Lipid dysfunction and pathogenesis of multiple system atrophy. Acta Neuropathologica Communications, 2014, 2, 15.	2.4	40
38	Age-Dependent Alterations of the Hippocampal Cell Composition and Proliferative Potential in the hAl²PPSwInd-J20 Mouse. Journal of Alzheimer's Disease, 2014, 41, 1177-1192.	1.2	13
39	P1-039: MAPT METHYLATION IN ALZHEIMER'S DISEASE. , 2014, 10, P317-P318.		3
40	ABCA8 stimulates sphingomyelin production in oligodendrocytes. Biochemical Journal, 2013, 452, 401-410.	1.7	40
41	Deletion of <i>Abca7</i> Increases Cerebral Amyloid-β Accumulation in the J20 Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2013, 33, 4387-4394.	1.7	165
42	Changes in Sphingomyelin Level Affect Alpha-Synuclein and ABCA5 Expression. Journal of Parkinson's Disease, 2012, 2, 41-46.	1.5	29
43	Wild Type and Tangier Disease ABCA1 Mutants Modulate Cellular Amyloid-β Production Independent of Cholesterol Efflux Activity. Journal of Alzheimer's Disease, 2011, 27, 441-452.	1.2	11