Nahum Sonenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4649433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Upstream and downstream of mTOR. Genes and Development, 2004, 18, 1926-1945.	2.7	3,638
2	Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell, 2009, 136, 731-745.	13.5	2,754
3	Regulation of mRNA Translation and Stability by microRNAs. Annual Review of Biochemistry, 2010, 79, 351-379.	5.0	2,694
4	elF4 Initiation Factors: Effectors of mRNA Recruitment to Ribosomes and Regulators of Translation. Annual Review of Biochemistry, 1999, 68, 913-963.	5.0	1,934
5	Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 1988, 334, 320-325.	13.7	1,896
6	Regulation of translation initiation by FRAP/mTOR. Genes and Development, 2001, 15, 807-826.	2.7	1,363
7	Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function. Nature, 1994, 371, 762-767.	13.7	1,192
8	Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap. Nature, 1990, 345, 544-547.	13.7	920
9	Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature, 2005, 433, 477-480.	13.7	841
10	Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science, 2016, 352, 1413-1416.	6.0	830
11	Translational Control of Long-Lasting Synaptic Plasticity and Memory. Neuron, 2009, 61, 10-26.	3.8	817
12	Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nature Medicine, 2000, 6, 821-825.	15.2	742
13	Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes and Development, 2001, 15, 2852-2864.	2.7	703
14	mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation. Cell Metabolism, 2013, 18, 698-711.	7.2	647
15	Targeting the translation machinery in cancer. Nature Reviews Drug Discovery, 2015, 14, 261-278.	21.5	628
16	mTORC1-Mediated Cell Proliferation, But Not Cell Growth, Controlled by the 4E-BPs. Science, 2010, 328, 1172-1176.	6.0	624
17	The Fragile X Syndrome Protein Represses Activity-Dependent Translation through CYFIP1, a New 4E-BP. Cell, 2008, 134, 1042-1054.	13.5	542
18	Fragile X syndrome. Nature Reviews Disease Primers, 2017, 3, 17065.	18.1	490

2

#	Article	IF	CITATIONS
19	Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature, 2015, 519, 106-109.	13.7	471
20	The mTOR/PI3K and MAPK pathways converge on elF4B to control its phosphorylation and activity. EMBO Journal, 2006, 25, 2781-2791.	3.5	459
21	MicroRNA Inhibition of Translation Initiation in Vitro by Targeting the Cap-Binding Complex eIF4F. Science, 2007, 317, 1764-1767.	6.0	458
22	Double-Stranded RNA-Dependent Protein Kinase Links Pathogen Sensing with Stress and Metabolic Homeostasis. Cell, 2010, 140, 338-348.	13.5	453
23	Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature, 2013, 493, 371-377.	13.7	451
24	elF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14134-14139.	3.3	447
25	Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes and Development, 2005, 19, 104-113.	2.7	403
26	Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO Journal, 2004, 23, 1761-1769.	3.5	397
27	The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. Rna, 2001, 7, 382-394.	1.6	389
28	Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature, 1998, 392, 520-523.	13.7	358
29	Structure of translation factor elF4E bound to m7GDP and interaction with 4E-binding protein. Nature Structural Biology, 1997, 4, 717-724.	9.7	347
30	Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nature Medicine, 2001, 7, 1128-1132.	15.2	341
31	Mammalian miRNA RISC Recruits CAF1 and PABP to Affect PABP-Dependent Deadenylation. Molecular Cell, 2009, 35, 868-880.	4.5	331
32	Eukaryotic translation initiation factors and regulators. Current Opinion in Structural Biology, 2003, 13, 56-63.	2.6	296
33	NRF2 Promotes Tumor Maintenance by Modulating mRNA Translation in Pancreatic Cancer. Cell, 2016, 166, 963-976.	13.5	294
34	Targeting the eIF4F Translation Initiation Complex: A Critical Nexus for Cancer Development. Cancer Research, 2015, 75, 250-263.	0.4	291
35	miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4–NOT. Nature Structural and Molecular Biology, 2011, 18, 1211-1217.	3.6	286
36	The Translation Repressor 4E-BP2 Is Critical for eIF4F Complex Formation, Synaptic Plasticity, and Memory in the Hippocampus. Journal of Neuroscience, 2005, 25, 9581-9590.	1.7	280

#	Article	IF	CITATIONS
37	Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. Journal of Clinical Investigation, 2007, 117, 387-396.	3.9	279
38	Translational control of the innate immune response through IRF-7. Nature, 2008, 452, 323-328.	13.7	275
39	Remote Control of Gene Function by Local Translation. Cell, 2014, 157, 26-40.	13.5	273
40	mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature, 2015, 517, 497-500.	13.7	257
41	mTOR Controls Mitochondrial Dynamics and Cell Survival via MTFP1. Molecular Cell, 2017, 67, 922-935.e5.	4.5	249
42	Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4218-4227.	3.3	249
43	Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science, 2019, 365, 825-829.	6.0	240
44	A New Paradigm for Translational Control: Inhibition via 5′-3′ mRNA Tethering by Bicoid and the eIF4E Cognate 4EHP. Cell, 2005, 121, 411-423.	13.5	232
45	Structural basis for the recruitment of the human CCR4–NOT deadenylase complex by tristetraprolin. Nature Structural and Molecular Biology, 2013, 20, 735-739.	3.6	230
46	Activation of double-stranded RNA-dependent kinase (dsl) by the TAR region of HIV-1 mRNA: A novel translational control mechanism. Cell, 1989, 56, 303-312.	13.5	226
47	The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. Nature Cell Biology, 2001, 3, 596-601.	4.6	202
48	The Organizing Principles of Eukaryotic Ribosome Recruitment. Annual Review of Biochemistry, 2019, 88, 307-335.	5.0	196
49	Translational control of immune responses: from transcripts to translatomes. Nature Immunology, 2014, 15, 503-511.	7.0	193
50	Translational Control in Cancer. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032896.	2.3	191
51	Targeting Adenosine Monophosphate-Activated Protein Kinase (AMPK) in Preclinical Models Reveals a Potential Mechanism for the Treatment of Neuropathic Pain. Molecular Pain, 2011, 7, 1744-8069-7-70.	1.0	189
52	Epigenetic Activation of a Subset of mRNAs by eIF4E Explains Its Effects on Cell Proliferation. PLoS ONE, 2007, 2, e242.	1.1	184
53	A Novel Function of the MA-3 Domains in Transformation and Translation Suppressor Pdcd4 Is Essential for Its Binding to Eukaryotic Translation Initiation Factor 4A. Molecular and Cellular Biology, 2004, 24, 3894-3906.	1.1	183
54	New Modes of Translational Control in Development, Behavior, and Disease. Molecular Cell, 2007, 28, 721-729.	4.5	181

#	Article	IF	CITATIONS
55	Translational control of tumor immune escape via the eIF4F–STAT1–PD-L1 axis in melanoma. Nature Medicine, 2018, 24, 1877-1886.	15.2	180
56	The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs. Nature Communications, 2017, 8, 16056.	5.8	179
57	elF4E, the mRNA cap-binding protein: from basic discovery to translational researchThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Systems and Chemical Biology, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2008, 86, 178-183.	0.9	178
58	Signalling to eIF4E in cancer. Biochemical Society Transactions, 2015, 43, 763-772.	1.6	177
59	Pharmacogenetic Inhibition of eIF4E-Dependent Mmp9 mRNA Translation Reverses Fragile X Syndrome-like Phenotypes. Cell Reports, 2014, 9, 1742-1755.	2.9	174
60	N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Research, 2017, 45, 6023-6036.	6.5	173
61	Distinct perturbation of the translatome by the antidiabetic drug metformin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8977-8982.	3.3	169
62	A Novel 4EHP-GIGYF2 Translational Repressor Complex Is Essential for Mammalian Development. Molecular and Cellular Biology, 2012, 32, 3585-3593.	1.1	164
63	Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nature Medicine, 2017, 23, 674-677.	15.2	164
64	HuR protein attenuates miRNA-mediated repression by promoting miRISC dissociation from the target RNA. Nucleic Acids Research, 2012, 40, 5088-5100.	6.5	162
65	Translation deregulation in human disease. Nature Reviews Molecular Cell Biology, 2018, 19, 791-807.	16.1	161
66	ATP/Mg++-dependent cross-linking of cap binding proteins to the 5′ end of eukaryotic mRNA. Nucleic Acids Research, 1981, 9, 1643-1656.	6.5	159
67	Leishmania Repression of Host Translation through mTOR Cleavage Is Required for Parasite Survival and Infection. Cell Host and Microbe, 2011, 9, 331-341.	5.1	153
68	Translational Homeostasis via the mRNA Cap-Binding Protein, elF4E. Molecular Cell, 2012, 46, 847-858.	4.5	146
69	Structure-Activity Analysis of Niclosamide Reveals Potential Role for Cytoplasmic pH in Control of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling. Journal of Biological Chemistry, 2012, 287, 17530-17545.	1.6	141
70	elF4E/4E-BP Ratio Predicts the Efficacy of mTOR Targeted Therapies. Cancer Research, 2012, 72, 6468-6476.	0.4	140
71	Sequence of reovirus haemagglutinin predicts a coiled-coil structure. Nature, 1985, 315, 421-423.	13.7	137
72	Translation is actively regulated during the differentiation of CD8+ effector T cells. Nature Immunology, 2017, 18, 1046-1057.	7.0	126

#	Article	IF	CITATIONS
73	Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing. Nature Communications, 2017, 8, 16014.	5.8	125
74	Principles of Translational Control. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032607.	2.3	125
75	Phosphorylation of elF4E attenuates its interaction with mRNA 5' cap analogs by electrostatic repulsion: Intein-mediated protein ligation strategy to obtain phosphorylated protein. Rna, 2003, 9, 52-61.	1.6	124
76	Cloning and Characterization of 4EHP, a Novel Mammalian eIF4E-related Cap-binding Protein. Journal of Biological Chemistry, 1998, 273, 13104-13109.	1.6	122
77	Nuclear Eukaryotic Initiation Factor 4e (Eif4e) Colocalizes with Splicing Factors in Speckles. Journal of Cell Biology, 2000, 148, 239-246.	2.3	119
78	MicroRNAs Trigger Dissociation of eIF4AI and eIF4AII from Target mRNAs in Humans. Molecular Cell, 2014, 56, 79-89.	4.5	117
79	Translational control of the activation of transcription factor NF-ήB and production of type I interferon by phosphorylation of the translation factor elF4E. Nature Immunology, 2012, 13, 543-550.	7.0	114
80	Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1576-1581.	3.3	113
81	Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. Rna, 2014, 20, 1398-1409.	1.6	112
82	The MNK–eIF4E Signaling Axis Contributes to Injury-Induced Nociceptive Plasticity and the Development of Chronic Pain. Journal of Neuroscience, 2017, 37, 7481-7499.	1.7	106
83	p53-Dependent Translational Control of Senescence and Transformation via 4E-BPs. Cancer Cell, 2009, 16, 439-446.	7.7	104
84	Protein analysis by mass spectrometry and sequence database searching: Tools for cancer research in the post-genomic era. Electrophoresis, 1999, 20, 310-319.	1.3	100
85	Inhibition of Myc-dependent apoptosis by eukaryotic translation initiation factor 4E requires cyclin D1. Oncogene, 2000, 19, 1437-1447.	2.6	100
86	ERK and mTOR Signaling Couple β-Adrenergic Receptors to Translation Initiation Machinery to Gate Induction of Protein Synthesis-dependent Long-term Potentiation. Journal of Biological Chemistry, 2007, 282, 27527-27535.	1.6	99
87	Translational Control of Cell Fate: Availability of Phosphorylation Sites on Translational Repressor 4E-BP1 Governs Its Proapoptotic Potency. Molecular and Cellular Biology, 2002, 22, 2853-2861.	1.1	96
88	Postnatal Deamidation of 4E-BP2 in Brain Enhances Its Association with Raptor and Alters Kinetics of Excitatory Synaptic Transmission. Molecular Cell, 2010, 37, 797-808.	4.5	96
89	Nociceptor Translational Profiling Reveals the Ragulator-Rag GTPase Complex as a Critical Generator of Neuropathic Pain. Journal of Neuroscience, 2019, 39, 393-411.	1.7	95
90	G3BP1 promotes stress-induced RNA granule interactions to preserve polyadenylated mRNA. Journal of Cell Biology, 2015, 209, 73-84.	2.3	94

#	Article	IF	CITATIONS
91	Cap-binding protein 4EHP effects translation silencing by microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5425-5430.	3.3	93
92	The rate of protein synthesis in hematopoietic stem cells is limited partly by 4E-BPs. Genes and Development, 2016, 30, 1698-1703.	2.7	91
93	Unique translation initiation of mRNAs-containing TISU element. Nucleic Acids Research, 2011, 39, 7598-7609.	6.5	89
94	Epiregulin and EGFR interactions are involved in pain processing. Journal of Clinical Investigation, 2017, 127, 3353-3366.	3.9	85
95	DAP5 associates with eIF2Î ² and eIF4AI to promote Internal Ribosome Entry Site driven translation. Nucleic Acids Research, 2015, 43, 3764-3775.	6.5	81
96	Translational Tolerance of Mitochondrial Genes to Metabolic Energy Stress Involves TISU and eIF1-eIF4GI Cooperation in Start Codon Selection. Cell Metabolism, 2015, 21, 479-492.	7.2	80
97	mTORC1 inhibition induces pain via IRS-1-dependent feedback activation of ERK. Pain, 2013, 154, 1080-1091.	2.0	79
98	Metformin inhibits RAN translation through PKR pathway and mitigates disease in <i>C9orf72</i> ALS/FTD mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18591-18599.	3.3	79
99	elF2α controls memory consolidation via excitatory and somatostatin neurons. Nature, 2020, 586, 412-416.	13.7	74
100	An Efficient System for Cap- and Poly(A)-Dependent Translation In Vitro. , 2004, 257, 155-170.		73
101	Translational control in the tumor microenvironment promotes lung metastasis: Phosphorylation of eIF4E in neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2202-E2209.	3.3	73
102	Light-regulated translational control of circadian behavior by eIF4E phosphorylation. Nature Neuroscience, 2015, 18, 855-862.	7.1	71
103	Autism-Misregulated elF4G Microexons Control Synaptic Translation and Higher Order Cognitive Functions. Molecular Cell, 2020, 77, 1176-1192.e16.	4.5	69
104	Antidepressant actions of ketamine engage cell-specific translation via elF4E. Nature, 2021, 590, 315-319.	13.7	68
105	S6K-STING interaction regulates cytosolic DNA–mediated activation of the transcription factor IRF3. Nature Immunology, 2016, 17, 514-522.	7.0	67
106	Translational control of depression-like behavior via phosphorylation of eukaryotic translation initiation factor 4E. Nature Communications, 2018, 9, 2459.	5.8	65
107	Translational control and the cancer cell response to stress. Current Opinion in Cell Biology, 2017, 45, 102-109.	2.6	58
108	The 4E-BP–elF4E axis promotes rapamycin-sensitive growth and proliferation in lymphocytes. Science Signaling, 2016, 9, ra57.	1.6	56

#	Article	IF	CITATIONS
109	Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	55
110	Control of embryonic stem cell self-renewal and differentiation via coordinated alternative splicing and translation of YY2. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12360-12367.	3.3	54
111	4E-BP1 Is a Tumor Suppressor Protein Reactivated by mTOR Inhibition in Head and Neck Cancer. Cancer Research, 2019, 79, 1438-1450.	0.4	54
112	Neuronal Regulation of elF2α Function in Health and Neurological Disorders. Trends in Molecular Medicine, 2018, 24, 575-589.	3.5	52
113	A threonyl-tRNA synthetase-mediated translation initiation machinery. Nature Communications, 2019, 10, 1357.	5.8	52
114	Metformin for Treatment of Fragile X Syndrome and Other Neurological Disorders. Annual Review of Medicine, 2019, 70, 167-181.	5.0	52
115	Parallel measurement of dynamic changes in translation rates in single cells. Nature Methods, 2014, 11, 86-93.	9.0	49
116	Single-Molecule Kinetics of the Eukaryotic Initiation Factor 4AI upon RNA Unwinding. Structure, 2014, 22, 941-948.	1.6	48
117	Inhibition of Group I Metabotropic Glutamate Receptors Reverses Autistic-Like Phenotypes Caused by Deficiency of the Translation Repressor eIF4E Binding Protein 2. Journal of Neuroscience, 2015, 35, 11125-11132.	1.7	48
118	MNK Inhibition Sensitizes <i>KRAS</i> -Mutant Colorectal Cancer to mTORC1 Inhibition by Reducing eIF4E Phosphorylation and c-MYC Expression. Cancer Discovery, 2021, 11, 1228-1247.	7.7	45
119	Rheb (Ras Homologue Enriched in Brain)-dependent Mammalian Target of Rapamycin Complex 1 (mTORC1) Activation Becomes Indispensable for Cardiac Hypertrophic Growth after Early Postnatal Period. Journal of Biological Chemistry, 2013, 288, 10176-10187.	1.6	44
120	Poliovirus translation: A paradigm for a novel initiation mechanism. BioEssays, 1989, 11, 128-132.	1.2	43
121	The elF2 $\hat{1}$ ± Kinase GCN2 Modulates Period and Rhythmicity of the Circadian Clock by Translational Control of Atf4. Neuron, 2019, 104, 724-735.e6.	3.8	43
122	Insulin regulates carboxypeptidase E by modulating translation initiation scaffolding protein elF4G1 in pancreatic 1² cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2319-28.	3.3	42
123	Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing. Nature Communications, 2015, 6, 6410.	5.8	42
124	Norepinephrine triggers metaplasticity of LTP by increasing translation of specific mRNAs. Learning and Memory, 2015, 22, 499-508.	0.5	42
125	Translational control of ERK signaling through miRNA/4EHP-directed silencing. ELife, 2018, 7, .	2.8	41
126	Multifaceted Regulation of Somatic Cell Reprogramming by mRNA Translational Control. Cell Stem Cell, 2014, 14, 606-616.	5.2	39

#	Article	IF	CITATIONS
12	Deficiency in <scp>mTORC</scp> 1â€controlled <i> C/ <scp>EBP</scp> Î² </i> ― <scp>mRNA</scp> translation improves metabolic health in mice. EMBO Reports, 2015, 16, 1022-1036.	2.0	38
128	LRRK2 regulates retrograde synaptic compensation at the Drosophila neuromuscular junction. Nature Communications, 2016, 7, 12188.	5.8	37
129	elF2α phosphorylation controls thermal nociception. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11949-11954.	3.3	37
130	Translation control during prolonged mTORC1 inhibition mediated by 4E-BP3. Nature Communications, 2016, 7, 11776.	5.8	37
13	Beyond molecular tumor heterogeneity: protein synthesis takes control. Oncogene, 2018, 37, 2490-2501.	2.6	37
132	 Inhibitory interneurons mediate autism-associated behaviors via 4E-BP2. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18060-18067. 	3.3	37
13	Capped mRNAs with Reduced Secondary Structure Can Function in Extracts from Poliovirus-Infected Cells. Molecular and Cellular Biology, 1982, 2, 1633-1638.	1.1	37
134	SIGNAL TRANSDUCTION: Protein Synthesis and Oncogenesis Meet Again. Science, 2006, 314, 428-429.	6.0	36
13	mTOR signaling in VIP neurons regulates circadian clock synchrony and olfaction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3296-E3304.	3.3	36
130	Gastrin induces phosphorylation of eIF4E binding protein 1 and translation initiation of ornithine decarboxylase mRNA. Oncogene, 1998, 16, 2219-2227.	2.6	35
137	Inducible costimulator facilitates T-dependent B cell activation by augmenting IL-4 translation. Molecular Immunology, 2014, 59, 46-54.	1.0	35
138	⁸ mTOR kinase is needed for the development and stabilization of dendritic arbors in newly born olfactory bulb neurons. Developmental Neurobiology, 2016, 76, 1308-1327.	1.5	35
139	Inhibiting the MNK1/2-eIF4E axis impairs melanoma phenotype switching and potentiates antitumor immune responses. Journal of Clinical Investigation, 2021, 131, .	3.9	35
140	Aminoacylation of Proteins: New Targets for the Old ARSenal. Cell Metabolism, 2018, 27, 1-3.	7.2	34
14	Translational control of nociception via 4E-binding protein 1. ELife, 2015, 4, .	2.8	34
14:	Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches. PLoS ONE, 2015, 10, e0123352.	1.1	33
143	The multifaceted eukaryotic cap structure. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1636.	3.2	33
144	4 Largen: A Molecular Regulator of Mammalian Cell Size Control. Molecular Cell, 2014, 53, 904-915.	4.5	30

#	Article	IF	CITATIONS
145	Acute Fasting Regulates Retrograde Synaptic Enhancement through a 4E-BP-Dependent Mechanism. Neuron, 2016, 92, 1204-1212.	3.8	30
146	Regulation of Translation via TOR Signaling: Insights from Drosophila melanogaster. Journal of Nutrition, 2001, 131, 2988S-2993S.	1.3	29
147	Mitochondrial Threonyl-tRNA Synthetase TARS2 Is Required for Threonine-Sensitive mTORC1 Activation. Molecular Cell, 2021, 81, 398-407.e4.	4.5	29
148	microRNA-mediated translation repression through GYF-1 and IFE-4 in <i>C. elegans</i> development. Nucleic Acids Research, 2021, 49, 4803-4815.	6.5	28
149	elF4A inhibition circumvents uncontrolled DNA replication mediated by 4E-BP1 loss in pancreatic cancer. JCl Insight, 2019, 4, .	2.3	25
150	Proposing a mechanism of action for ataluren. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12353-12355.	3.3	24
151	The mTOR Targets 4E-BP1/2 Restrain Tumor Growth and Promote Hypoxia Tolerance in PTEN-driven Prostate Cancer. Molecular Cancer Research, 2018, 16, 682-695.	1.5	24
152	Dynamic interaction of poly(A)-binding protein with the ribosome. Scientific Reports, 2018, 8, 17435.	1.6	23
153	microRNA-induced translational control of antiviral immunity by the cap-binding protein 4EHP. Molecular Cell, 2021, 81, 1187-1199.e5.	4.5	23
154	Identification and characterization of hippuristanol-resistant mutants reveals elF4A1 dependencies within mRNA 5′ leader regions. Nucleic Acids Research, 2020, 48, 9521-9537.	6.5	22
155	Hepatic posttranscriptional network comprised of CCR4–NOT deadenylase and FGF21 maintains systemic metabolic homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7973-7981.	3.3	21
156	Metformin requires 4E-BPs to induce apoptosis and repress translation of Mcl-1 in hepatocellular carcinoma cells. Oncotarget, 2017, 8, 50542-50556.	0.8	21
157	A continuum of mRNP complexes in embryonic microRNA-mediated silencing. Nucleic Acids Research, 2017, 45, gkw872.	6.5	20
158	Active-site mTOR inhibitors augment HSV1-dICP0 infection in cancer cells via dysregulated eIF4E/4E-BP axis. PLoS Pathogens, 2018, 14, e1007264.	2.1	20
159	The long unfinished march towards understanding microRNA-mediated repression. Rna, 2015, 21, 519-524.	1.6	19
160	elF4E S209 phosphorylation licenses myc- and stress-driven oncogenesis. ELife, 2020, 9, .	2.8	19
161	Mapping of the gene for interferon-inducible dsRNA-dependent protein kinase to chromosome region 2p21-22: A site of rearrangements in myeloproliferative disorders. Genes Chromosomes and Cancer, 1993, 8, 34-37.	1.5	18
162	4Eâ€BP1 and 4Eâ€BP2 double knockout mice are protected from agingâ€associated sarcopenia. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 696-709.	2.9	18

#	Article	IF	CITATIONS
163	The translational landscape of ground state pluripotency. Nature Communications, 2020, 11, 1617.	5.8	18
164	Non-cooperative 4E-BP2 folding with exchange between elF4E-binding and binding-incompatible states tunes cap-dependent translation inhibition. Nature Communications, 2020, 11, 3146.	5.8	17
165	Asterâ€C coordinates with COP I vesicles to regulate lysosomal trafficking and activation of mTORC1. EMBO Reports, 2020, 21, e49898.	2.0	17
166	Translational control and autism-like behaviors. Cellular Logistics, 2013, 3, e24551.	0.9	15
167	Eukaryotic initiation factor 4F — sidestepping resistance mechanisms arising from expression heterogeneity. Current Opinion in Genetics and Development, 2018, 48, 89-96.	1.5	15
168	Distinctive tRNA Repertoires in Proliferating versus Differentiating Cells. Cell, 2014, 158, 1238-1239.	13.5	14
169	Protein Synthesis and Translational Control: A Historical Perspective. Cold Spring Harbor Perspectives in Biology, 2019, 11, a035584.	2.3	14
170	Unorthodox Mechanisms to Initiate Translation Open Novel Paths for Gene Expression. Journal of Molecular Biology, 2020, 432, 166702.	2.0	14
171	Membrane-dependent relief of translation elongationÂarrest on pseudouridine- and <i>N</i> 1-methyl-pseudouridine-modified mRNAs. Nucleic Acids Research, 2022, 50, 7202-7215.	6.5	14
172	4E-BP2/SH2B1/IRS2 Are Part of a Novel Feedback Loop That Controls β-Cell Mass. Diabetes, 2016, 65, 2235-2248.	0.3	13
173	Assessing eukaryotic initiation factor 4F subunit essentiality by CRISPR-induced gene ablation in the mouse. Cellular and Molecular Life Sciences, 2021, 78, 6709-6719.	2.4	13
174	V-ATPase-associated prorenin receptor is upregulated in prostate cancer after PTEN loss. Oncotarget, 2019, 10, 4923-4936.	0.8	12
175	Muscle metabolic alterations induced by genetic ablation of 4E-BP1 and 4E-BP2 in response to diet-induced obesity. Molecular Nutrition and Food Research, 2017, 61, 1700128.	1.5	11
176	Structural Dynamics of the GW182 Silencing Domain Including its RNA Recognition motif (RRM) Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2018, 29, 158-173.	1.2	11
177	Dysregulated translational control in brain disorders: from genes to behavior. Current Opinion in Genetics and Development, 2020, 65, 34-41.	1.5	11
178	4E-BP–Dependent Translational Control of Irf8 Mediates Adipose Tissue Macrophage Inflammatory Response. Journal of Immunology, 2020, 204, 2392-2400.	0.4	11
179	Lesch-Nyhan disease causes impaired energy metabolism and reduced developmental potential in midbrain dopaminergic cells. Stem Cell Reports, 2021, 16, 1749-1762.	2.3	11
180	Translation and cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 751-752.	0.9	10

#	Article	IF	CITATIONS
181	Rheb1-Independent Activation of mTORC1 in Mammary Tumors Occurs through Activating Mutations in mTOR. Cell Reports, 2020, 31, 107571.	2.9	10
182	4E-BP2–dependent translation in parvalbumin neurons controls epileptic seizure threshold. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
183	Removing 4E-BP Enables Synapses to Refine without Postsynaptic Activity. Cell Reports, 2018, 23, 11-22.	2.9	9
184	mRNA translation is a therapeutic vulnerability necessary for bladder epithelial transformation. JCI Insight, 2021, 6, .	2.3	9
185	Polysome Profiling Analysis. Bio-protocol, 2013, 3, .	0.2	9
186	Transcriptional induction of 4E-BP3 prolongs translation repression. Cell Cycle, 2016, 15, 3325-3326.	1.3	8
187	The elF4E homolog 4EHP (elF4E2) regulates hippocampal long-term depression and impacts social behavior. Molecular Autism, 2020, 11, 92.	2.6	8
188	Elevated V–ATPase Activity Following PTEN Loss Is Required for Enhanced Oncogenic Signaling in Breast Cancer. Molecular Cancer Research, 2020, 18, 1477-1490.	1.5	8
189	Association of cap binding protein-related polypeptides with cytoplasmic RNP particles of chick embryonic muscle. FEBS Letters, 1982, 149, 29-35.	1.3	7
190	Role of Translational Attenuation in Inherited Retinal Degeneration. , 2019, 60, 4849.		7
191	Lab-On-A-Chip for the Development of Pro-/Anti-Angiogenic Nanomedicines to Treat Brain Diseases. International Journal of Molecular Sciences, 2019, 20, 6126.	1.8	7
192	High-risk human papillomavirus-18 uses an mRNA sequence to synthesize oncoprotein E6 in tumors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
193	UBR4/POE facilitates secretory trafficking to maintain circadian clock synchrony. Nature Communications, 2022, 13, 1594.	5.8	7
194	Wakefulness/sleep architecture and electroencephalographic activity in mice lacking the translational repressor 4E-BP1 or 4E-BP2. Sleep, 2020, 43, .	0.6	5
195	BAD regulates mammary gland morphogenesis by 4E-BP1-mediated control of localized translation in mouse and human models. Nature Communications, 2021, 12, 2939.	5.8	5
196	Diverse cap-binding properties of Drosophila elF4E isoforms. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1292-1303.	1.1	4
197	4E-BP2-dependent translation in cerebellar Purkinje cells controls spatial memory but not autism-like behaviors. Cell Reports, 2021, 35, 109036.	2.9	2
198	Macrophage Inflammatory Protein-1α and Interferon-Inducible Protein 10 Inhibit Synergistically Induced Growth Factor Stimulation of MAP Kinase Activity and Suppress Phosphorylation of Eukaryotic Initiation Factor 4E and 4E Binding Protein 1. Blood, 1997, 89, 3582-3595.	0.6	2

#	Article	IF	CITATIONS
199	Aaron Shatkin (1934–2012). Science, 2012, 337, 309-309.	6.0	1
200	Alexander Spirin (1931–2020): A visionary scientist, a teacher, a colleague, a friend. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2103938118.	3.3	1
201	Mechanism of action of miRNA. FASEB Journal, 2012, 26, 461.3.	0.2	1
202	IDENTIFICATION OF POTENTIAL ANTI-ONCOGENIC PROPERTIES OF elF-4E BINDING PROTEINS 1 AND 2. Biology of the Cell, 1996, 88, 69-69.	0.7	0
203	Initiation of Protein Synthesis. , 2006, , 219-322.		0
204	Introduction toTranslation. Translation, 2013, 1, e24611.	2.9	0
205	Richard Jackson (1940–2020) ―A towering presence in translation. EMBO Journal, 2021, 40, .	3.5	0
206	Translational Control of Autism and Fragile-X Syndrome. , 2014, , 249-276.		0
207	Translational Control by 4E-BP1/2 Suppressor Proteins Regulates Mitochondrial Biosynthesis and Function during CD8 ⁺ T Cell Proliferation. Journal of Immunology, 2022, 208, 2702-2712.	0.4	0