Jaroslaw Domaradzki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4649344/publications.pdf Version: 2024-02-01

		430442	454577
133	1,351	18	30
papers	citations	h-index	g-index
100	100	122	1455
133	133	133	1455
all docs	docs citations	times ranked	citing authors

IAROSLAW DOMARADZKI

#	Article	IF	CITATIONS
1	TiO2/SiO2 multilayer as an antireflective and protective coating deposited by microwave assisted magnetron sputtering. Opto-electronics Review, 2013, 21, .	2.4	89
2	Functional photocatalytically active and scratch resistant antireflective coating based on TiO 2 and SiO 2. Applied Surface Science, 2016, 380, 165-171.	3.1	82
3	Microstructure and optical properties of TiO2 thin films prepared by low pressure hot target reactive magnetron sputtering. Thin Solid Films, 2006, 513, 269-274.	0.8	65
4	Surface characterization of TiO2 thin films obtained by high-energy reactive magnetron sputtering. Applied Surface Science, 2008, 254, 4396-4400.	3.1	47
5	Determination of optical and mechanical properties of Nb2O5 thin films for solar cells application. Applied Surface Science, 2014, 301, 63-69.	3.1	45
6	Correlation of Photocatalysis and Photoluminescence Effect in Relation to the Surface Properties of TiO ₂ :Tb Thin Films. International Journal of Photoenergy, 2013, 2013, 1-9.	1.4	44
7	Determination of structural, mechanical and corrosion properties of Nb2O5 and (NbyCu1â^'y)Ox thin films deposited on Ti6Al4V alloy substrates for dental implant applications. Materials Science and Engineering C, 2015, 47, 211-221.	3.8	43
8	Hardness of Nanocrystalline TiO ₂ Thin Films. Journal of Nano Research, 0, 18-19, 195-200.	0.8	41
9	Photoluminescence of Eu-doped TiO2 thin films prepared by low pressure hot target magnetron sputtering. Thin Solid Films, 2007, 515, 6344-6346.	0.8	39
10	Influence of annealing on the structure and stoichiometry of europium-doped titanium dioxide thin films. Vacuum, 2008, 82, 1007-1012.	1.6	36
11	Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti–Ag and Nb–Ag thin films. Materials Science and Engineering C, 2016, 62, 86-95.	3.8	33
12	Structural, optical and electrical properties of transparent V and Pd-doped TiO2 thin films prepared by sputtering. Thin Solid Films, 2006, 497, 243-248.	0.8	31
13	Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process. Materials Science-Poland, 2015, 33, 660-668.	0.4	29
14	Transparent oxide semiconductors based on TiO2 doped with V, Co and Pd elements. Journal of Non-Crystalline Solids, 2006, 352, 2324-2327.	1.5	26
15	Characterization of nanocrystalline TiO2–HfO2 thin films prepared by low pressure hot target reactive magnetron sputtering. Surface and Coatings Technology, 2006, 200, 6283-6287.	2.2	25
16	Tailoring optical and electrical properties of thin-film coatings based on mixed Hf and Ti oxides for optoelectronic application. Materials and Design, 2019, 175, 107822.	3.3	25
17	Functional Nb2O5 film and Nb2O5+ CuO, Nb2O5+ Graphene, Nb2O5+ CuO + Graphene composite films to modify the properties of Ti6Al4V titanium alloy. Thin Solid Films, 2016, 616, 64-72.	0.8	24
18	Influence of Nd-Doping on Photocatalytic Properties of TiO ₂ Nanoparticles and Thin Film Coatings. International Journal of Photoenergy, 2014, 2014, 1-10.	1.4	22

#	Article	IF	CITATIONS
19	Mechanical and electrochemical properties of Nb2O5, Nb2O5:Cu and graphene layers deposited on titanium alloy (Ti6Al4V). Surface and Coatings Technology, 2015, 271, 92-99.	2.2	20
20	Investigation of various properties of HfO 2 -TiO 2 thin film composites deposited by multi-magnetron sputtering system. Applied Surface Science, 2017, 421, 170-178.	3.1	18
21	X-ray, optical and electrical characterization of doped nanocrystalline titanium oxide thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 249-251.	1.7	17
22	Investigation of microstructure, micro-mechanical and optical properties of HfTiO 4 thin films prepared by magnetron co-sputtering. Materials Research Bulletin, 2015, 72, 116-122.	2.7	17
23	Influence of Annealing on Europium Photoexcitation Doped into Nanocrystalline Titania Film Prepared by Magnetron Sputtering. Journal of the Electrochemical Society, 2009, 156, H214.	1.3	16
24	Thermal oxidation impact on the optoelectronic and hydrogen sensing properties of p-type copper oxide thin films. Materials Research Bulletin, 2022, 147, 111646.	2.7	16
25	Structural investigations of TiO2:Tb thin films by X-ray diffraction and atomic force microscopy. Applied Surface Science, 2008, 254, 4303-4307.	3.1	15
26	Investigations of elemental composition and structure evolution in (Ti,Cu)-oxide gradient thin films prepared using (multi)magnetron co-sputtering. Surface and Coatings Technology, 2018, 334, 150-157.	2.2	15
27	Influence of thickness on transparency and sheet resistance of ITO thin films. , 2010, , .		14
28	Influence of Nd dopant amount on microstructure and photoluminescence of TiO2:Nd thin films. Optical Materials, 2015, 48, 172-178.	1.7	14
29	Comparison of structural, mechanical and corrosion properties of thin TiO 2 /graphene hybrid systems formed on Ti–Al–V alloys in biomedical applications. Surface and Coatings Technology, 2016, 290, 124-134.	2.2	14
30	Preparation of multicomponent thin films by magnetron co-sputtering method: The Cu-Ti case study. Vacuum, 2019, 161, 419-428.	1.6	14
31	Investigation of structural, optical and micro-mechanical properties of (NdyTi1â^'y)Ox thin films deposited by magnetron sputtering. Materials and Design, 2015, 85, 377-388.	3.3	13
32	Influence of doping with Co, Cu, Ce and Fe on structure and photocatalytic activity of TiO ₂ nanoparticles. Materials Science-Poland, 2017, 35, 725-732.	0.4	13
33	P-type transparent Ti–V oxides semiconductor thin film as a prospective material for transparent electronics. Thin Solid Films, 2012, 520, 3472-3476.	0.8	12
34	Perspectives of development of TCO and TOS thin films based on (Ti-Cu)oxide composites. Surface and Coatings Technology, 2016, 290, 28-33.	2.2	12
35	Gasochromic Effect in Nanocrystalline TiO ₂ Thin Films Doped with Ta and Pd. Acta Physica Polonica A, 2009, 116, S-126-S-128.	0.2	12
36	Investigations of optical and surface properties of Ag single thin film coating as semitransparent heat reflective mirror. Materials Science-Poland, 2016, 34, 747-753.	0.4	11

#	Article	IF	CITATIONS
37	Excitation mechanism of europium ions embedded into TiO2 nanocrystalline matrix. Thin Solid Films, 2009, 517, 6331-6333.	0.8	10
38	Effect of the nanocrystalline structure type on the optical properties of TiO2:Nd (1at.%) thin films. Optical Materials, 2015, 42, 423-429.	1.7	10
39	Influence of plasma treatment on wettability and scratch resistance of Ag-coated polymer substrates. Materials Science-Poland, 2016, 34, 418-426.	0.4	10
40	Microanalysis of Pd and V-doped TiO2 thin films prepared by sputtering. Thin Solid Films, 2007, 515, 6347-6349.	0.8	9
41	TiO2 thin films doped with Pd and Eu for optically and electrically active TOS–Si heterojunction. Optical Materials, 2009, 31, 1337-1339.	1.7	9
42	Photocatalytic properties of transparent TiO2 coatings doped with neodymium. Polish Journal of Chemical Technology, 2012, 14, 1-7.	0.3	9
43	Surface and mechanical characterization of ITO coatings prepared by microwaveâ€assisted magnetron sputtering process. Surface and Interface Analysis, 2014, 46, 827-831.	0.8	9
44	Influence of Material Composition on Structural and Optical Properties of HfO2-TiO2 Mixed Oxide Coatings. Coatings, 2016, 6, 13.	1.2	9
45	Analysis of electrical properties of forward-to-open (Ti,Cu)Ox memristor rectifier with elemental gradient distribution prepared using (multi)magnetron co-sputtering process. Materials Science in Semiconductor Processing, 2019, 94, 9-14.	1.9	9
46	Thin Films Based on Nanocrystalline TiO ₂ for Transparent Electronics. Acta Physica Polonica A, 2009, 116, S-72-S-74.	0.2	9
47	Photoelectrical properties of heterojunction devices based on transparent oxide semiconductors on silicon. Journal of Non-Crystalline Solids, 2006, 352, 2328-2331.	1.5	8
48	Structural and optical properties of terbium in TiO2 matrix. Optical Materials, 2009, 31, 1349-1352.	1.7	8
49	Investigations of reversible optical transmission in gasochromic (Ti–V–Ta)Ox thin film for gas sensing applications. Sensors and Actuators B: Chemical, 2014, 201, 420-425.	4.0	8
50	Comparison of structural, mechanical and corrosion properties of TiO 2 -WO 3 mixed oxide films deposited on TiAlV surface by electron beam evaporation. Applied Surface Science, 2017, 421, 185-190.	3.1	8
51	Investigations of structure and electrical properties of TiO2/CuO thin film heterostructures. Thin Solid Films, 2019, 690, 137538.	0.8	8
52	Characterization of Transparent and Nanocrystalline TiO2:Nd Thin Films Prepared by Magnetron Sputtering. Acta Physica Polonica A, 2009, 116, S-75-S-77.	0.2	8
53	Electrical properties of nanocrystalline HfTiO4gate insulator. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2215-2218.	0.8	7
54	Electrical characterization of semiconducting V and Pd-doped TiO2 thin films on silicon by impedance spectroscopy. Thin Solid Films, 2007, 515, 3745-3752.	0.8	7

JAROSLAW DOMARADZKI

#	Article	IF	CITATIONS
55	Structural and surface properties of TiO2 thin films doped with neodymium deposited by reactive magnetron sputtering. Materials Science-Poland, 2013, 31, 71-79.	0.4	7
56	Investigation of physicochemical and tribological properties of transparent oxide semiconducting thin films based on Ti-V oxides. Materials Science-Poland, 2013, 31, 434-445.	0.4	7
57	Investigation of structural, optical and electrical properties of (Ti,Nb)Ox thin films deposited by high energy reactive magnetron sputtering. Materials Science-Poland, 2014, 32, 457-464.	0.4	7
58	Investigations of electrical and optical properties of functional TCO thin films. Materials Science-Poland, 2015, 33, 363-368.	0.4	7
59	Memristive properties of transparent oxide semiconducting (Ti,Cu)O <i>_x</i> -gradient thin film. Semiconductor Science and Technology, 2018, 33, 015002.	1.0	7
60	Properties of Metallic and Oxide Thin Films Based on Ti and Co Prepared by Magnetron Sputtering from Sintered Targets with Different Co-Content. Materials, 2021, 14, 3797.	1.3	7
61	Properties of Nanocrystalline TiO2:V Thin Films as a Transparent Semiconducting Oxides. Acta Physica Polonica A, 2009, 116, S-33-S-35.	0.2	7
62	Study of Structure Densification in TiO2Coatings Prepared by Magnetron Sputtering under Low Pressure of Oxygen Plasma Discharge. Acta Physica Polonica A, 2011, 120, 49-52.	0.2	7
63	Electrical characterisation of structures consisting of Ti–V–Pd thin film oxide on silicon by impedance spectroscopy. Solid State Ionics, 2005, 176, 2177-2180.	1.3	6
64	The effect of post-process annealing on optical and electrical properties of mixed HfO2–TiO2 thin film coatings. Journal of Materials Science: Materials in Electronics, 2019, 30, 6358-6369.	1.1	6
65	Electrical and optical properties of TOS–S heterojunction devices. Thin Solid Films, 2008, 516, 1473-1475.	0.8	5
66	Electrical and optical characterization of ITO thin films. , 2009, , .		5
67	Optical and electrical properties of nanocrystalline TiO2:Pd semiconducting oxides. Open Physics, 2011, 9, 313-318.	0.8	5
68	Influence of the structural and surface properties on photocatalytic activity of TiO ₂ :Nd thin films. Polish Journal of Chemical Technology, 2015, 17, 103-111.	0.3	5
69	Comparison of structural, mechanical and corrosion properties of (Ti0.68W0.32)Ox and (Ti0.41W0.59)Ox thin films, deposited on TiAlV surface by electron beam evaporation. Surface and Coatings Technology, 2016, 307, 596-602.	2.2	5
70	Effect of thickness on optoelectronic properties of ITO thin films. Circuit World, 2022, 48, 149-159.	0.7	5
71	Photocatalytic Coatings Based on TiOx for Application on Flexible Glass for Photovoltaic Panels. Journal of Materials Engineering and Performance, 2022, 31, 6998-7008.	1.2	5
72	XRD and AFM studies of nanocrystalline TiO <inf>2</inf> thin films prepared by modified magnetron sputtering. , 2008, , .		4

5

#	Article	IF	CITATIONS
73	Gasochromic Switching of Ta and Pd-Doped Nanocrystalline TiO ₂ Thin Films. Journal of Nanoscience and Nanotechnology, 2011, 11, 8744-8747.	0.9	4
74	Investigation of physicochemical properties of (Ti-V)Ox (4.3at.% of V) functional thin films and their possible application in the field of transparent electronics. Applied Surface Science, 2014, 304, 73-80.	3.1	4
75	Investigations of structural and electronic properties of TiO/sub 2/-doped layers deposited by hot target reactive magnetron sputtering method. , 0, , .		3
76	Characterization of TiO2 and TiO2-HfO2 Transparent Thin Films for Microelectronics Applications. , 2006, , .		3
77	Switching properties of vanadium doped TiO2 thin films prepared by magnetron sputtering. Thin Solid Films, 2009, 518, 1095-1098.	0.8	3
78	Photocatalytic properties of nanocrystalline TiO2 thin films doped with Tb. Open Physics, 2011, 9, 354-359.	0.8	3
79	Photoluminescence and Photocatalytic Properties of Nanocrystalline TiO ₂ :Tb Thin Films. Journal of Nano Research, 2012, 18-19, 187-193.	0.8	3
80	Structural properties of transparent Ti-V oxide semiconductor thin films. Open Physics, 2013, 11, .	0.8	3
81	Optical and electrical properties of (Ti-V)Ox thin film as n-type Transparent Oxide Semiconductor. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2014, 62, 583-588.	0.8	3
82	Investigation of electrical performance of silicon solar cells with transparent counter electrode. Microelectronics International, 2015, 32, 149-151.	0.4	3
83	Influence of ITO layer application on electrical parameters of silicon solar cells with screen printed front electrode. Microelectronics International, 2016, 33, 172-175.	0.4	3
84	Influence of post-process annealing temperature on structural, optical, mechanical and corrosion properties of mixed TiO2WO3 thin films. Thin Solid Films, 2020, 698, 137856.	0.8	3
85	Investigation of Optical Response of Gasochromic Thin Film Structures through Modelling of Their Transmission Spectra under Presence of Organic Vapor. Acta Physica Polonica A, 2015, 127, 1702-1705.	0.2	3
86	Analysis of surface properties of Ti-Cu-Ox gradient thin films using AFM and XPS investigations. Materials Science-Poland, 2018, 36, 761-768.	0.4	3
87	Electrical and optical properties of transparent oxide semiconductors (TOSs) based on Eu,Pd―and Tb,Pdâ€doped TiO ₂ . Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1967-1970.	0.8	2
88	Characterization of thin films based on TiO <inf>2</inf> by XRD, AFM and XPS measurements. , 2008, , .		2
89	Electrical properties of nanocrystalline TiO2thin films doped with Tb and Pd. Journal of Physics: Conference Series, 2009, 146, 012015.	0.3	2
90	Sheet resistance and optical properties of ITO thin films deposited by magnetron sputtering with		2

different O. , 2010, , .

1

#	Article	IF	CITATIONS
91	Long-term stability of gasochromic effect in TiO2:(W, Cr, Mo) thin film. , 2011, , .		2
92	Analysis of substrate type and thickness influence on wettability of Nb2O5 thin films. , 2011, , .		2
93	Analysis of surface properties of semiconducting (Ti,Pd,Eu)Ox thin films. Opto-electronics Review, 2016, 24, .	2.4	2
94	Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure. Beilstein Journal of Nanotechnology, 2022, 13, 265-273.	1.5	2
95	Selected properties of Al <i>_x</i> Zn <i>_y</i> O thin films prepared by reactive pulsed magnetron sputtering using a two-element Zn/Al target. Beilstein Journal of Nanotechnology, 2022, 13, 344-354.	1.5	2
96	Ti Zr dielectric layers deposited by hot target reactive magnetron sputtering. , 0, , .		1
97	Light-beam-induced current (LBIC) technique for semiconductors and ICs testing. , 2003, 5064, 269.		1
98	Detectors of optical and nuclear radiation examined by the light-beam-induced current (LBIC) method. , 2003, , .		1
99	Investigations of Electrical Behaviours of Grain Bounadries in Polycrystalline Silicon Solar Cells by EBIC and OBIC. , 2006, , .		1
100	Studies of electrical and optical properties of thin films of Ti-Pd-Eu oxides prepared by magnetron sputtering. , 2006, , .		1
101	Photoluminescence and electrical characterization of transparent Eu and Pd-doped TiO2 thin films. , 2006, , .		1
102	Influence of Tb-dopant on water adsorption and wettability of TiO <inf>2</inf> thin films. , 2009, , .		1
103	Investigation of gasochromic effects in TiO <inf>2</inf> thin films doped with W, Cr, Mo. , 2009, , .		1
104	Study of antistatic properties of TiO <inf>2</inf> ∶Tb and TiO <inf>2</inf> ∶(Tb,Pd) thin films obtained by magnetron sputtering process. , 2009, , .		1
105	Electrical investigation of transparent thin films based on TiO <inf>2</inf> doped with palladium and vanadium. , 2009, , .		1
106	Influence of Eu-doping on wettability of TiO <inf>2</inf> thin films. , 2009, , .		1
107	Hardness of nanocrystalline TiO. , 2010, , .		1

108 Influence of droplet size and surface preparation of TiO. , 2010, , .

#	Article	IF	CITATIONS
109	Humidity influence on antistatic properties of optical coatings. , 2010, , .		1
110	Electrical and antistatic properties of magnetron sputtered thin films based on TiO2:(V, Ta). , 2011, , .		1
111	Influence of nanocrystalline structure and composition on hardness of thin films based on TiO2. Open Physics, 2011, 9, 349-353.	0.8	1
112	Characterization and properties of multicomponent oxide thin films with gasochromic effect. , 2013, , .		1
113	Analysis of memristor-like behaviors in Au/Ti52Cu48Ox/TiAlV structure with gradient elements distribution. Materials Science in Semiconductor Processing, 2018, 87, 167-173.	1.9	1
114	Transparent thin films based on titanium oxides for photonic applications. , 0, , .		0
115	Structural, optical and electrical properties of nanocrystalline TiO2 $\hat{A}_{\hat{c}}$ HfO2 thin films. , 2006, , .		0
116	Structural properties of transparent Tb-doped TiO <inf>2</inf> thin films. , 2007, , .		0
117	Investigation of electrical and optical properties of TiO <inf>2</inf> :Pd, TiO <inf>2</inf> :(Eu,Pd) and TiO <inf>2</inf> :(Tb,Pd) thin films. , 2008, , .		Ο
118	Photoelectrical properties of TOS thin films based on TiO <inf>2</inf> prepared by modified magnetron sputtering. , 2008, , .		0
119	Influence of Eu, Tb, Pd dopants on electrical and optical properties of nanostructured TiO <inf>2</inf> thin films. , 2008, , .		0
120	Magnetron sputtering system with multi-targets for multilayers deposition. , 2009, , .		0
121	Structural, electrical and surface static charge investigation of TiO <inf>2</inf> thin films doped with different amount of vanadium. , 2009, , .		Ο
122	Electrical properties of polymer coatings modified with nanoadditives. , 2009, , .		0
123	Densification of TiO2structure in High Energy magnetron sputtering process by Nd-doping. Journal of Physics: Conference Series, 2009, 146, 012019.	0.3	0
124	Designing of antireflection coatings for optical lenses and solar cells. , 2010, , .		0
125	Optical and structural properties of V. , 2010, , .		0
126	Investigation of antistatic properties of spectacle lenses with antireflective coatings. , 2010, , .		0

Investigation of antistatic properties of spectacle lenses with antireflective coatings. , 2010, , . 126

#	Article	IF	CITATIONS
127	Influence of neodymium dopant on TiO <inf>2</inf> structure. , 2010, , .		0
128	Application of spectrophotometry and ellipsometry for determination of optical parameters of optical coating thin films. , 2010, , .		0
129	Thermoelectrical properties of TiO <inf>2</inf> :(Co, Pd) and TiO <inf>2</inf> :Nb thin films. , 2010, , .		0
130	Self-cleaning properties of nanocrystalline TiO2 thin films doped with terbium. , 2011, , .		0
131	Characterization of titanium-vanadium oxides deposited on silicon substrates using in photovoltaic applications. , 2011, , .		0
132	Influence of terbium on structure and luminescence of nanocrystalline TiO2 thin films. Open Physics, 2013, 11, .	0.8	0
133	Analiza wÅ,aÅ›ciwoÅ›ci wybranych warstw typu TCO jako optycznych luster podczerwieni. Przeglad Elektrotechniczny, 2015, 1, 22-25.	0.1	О