Věra Králová

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/464897/publications.pdf

Version: 2024-02-01

623734 610901 24 596 14 24 citations g-index h-index papers 25 25 25 1031 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Potential Anti-cancer Drugs Commonly Used for Other Indications. Current Cancer Drug Targets, 2015, 15, 35-52.	1.6	62
2	The effects of \hat{l}^2 -caryophyllene oxide and trans-nerolidol on the efficacy of doxorubicin in breast cancer cells and breast tumor-bearing mice. Biomedicine and Pharmacotherapy, 2017, 95, 828-836.	5.6	56
3	Antiproliferative effect of benzimidazole anthelmintics albendazole, ricobendazole, and flubendazole in intestinal cancer cell lines. Anti-Cancer Drugs, 2013, 24, 911-919.	1.4	53
4	The Influence of Sesquiterpenes from Myrica rubra on the Antiproliferative and Pro-Oxidative Effects of Doxorubicin and Its Accumulation in Cancer Cells. Molecules, 2015, 20, 15343-15358.	3.8	50
5	Selected Aspects of Chemoresistance Mechanisms in Colorectal Carcinoma—A Focus on Epithelial-to-Mesenchymal Transition, Autophagy, and Apoptosis. Cells, 2019, 8, 234.	4.1	46
6	Essential oil from Myrica rubra leaves inhibits cancer cell proliferation and induces apoptosis in several human intestinal lines. Industrial Crops and Products, 2014, 59, 20-26.	5.2	36
7	Antiproliferative effects of selenium compounds in colon cancer cells: Comparison of different cytotoxicity assays. Toxicology in Vitro, 2009, 23, 1406-1411.	2.4	35
8	Flubendazole induces mitotic catastrophe and senescence in colon cancer cells <i>in vitro</i> Journal of Pharmacy and Pharmacology, 2016, 68, 208-218.	2.4	35
9	Sesquiterpenes \hat{l}_{\pm} -humulene and \hat{l}^{2} -caryophyllene oxide enhance the efficacy of 5-fluorouracil and oxaliplatin in colon cancer cells. Acta Pharmaceutica, 2019, 69, 121-128.	2.0	35
10	Selenite-induced apoptosis and autophagy in colon cancer cells. Toxicology in Vitro, 2012, 26, 258-268.	2.4	28
11	The role of p38 in irinotecan-induced DNA damage and apoptosis of colon cancer cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 741-742, 27-34.	1.0	23
12	Flubendazole and mebendazole impair migration and epithelial to mesenchymal transition in oral cell lines. Chemico-Biological Interactions, 2018, 293, 124-132.	4.0	19
13	The Effect of Flubendazole on Adhesion and Migration in SW480 and SW620 Colon Cancer Cells. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 837-846.	1.7	19
14	Antiproliferative and cytotoxic effects of sodium selenite in human colon cancer cells. Toxicology in Vitro, 2009, 23, 1497-1503.	2.4	18
15	The effectiveness of oracin in enhancing the cytotoxicity of doxorubicin through the inhibition of doxorubicin deactivation in breast cancer MCF7 cells. Xenobiotica, 2010, 40, 681-690.	1.1	15
16	The Pharmaceutical Ability of Pistacia lentiscus L. Leaves Essential Oil Against Periodontal Bacteria and Candida sp. and Its Anti-Inflammatory Potential. Antibiotics, 2020, 9, 281.	3.7	14
17	Essential Oil from Myrica rubra Leaves Potentiated Antiproliferative and Prooxidative Effect of Doxorubicin and its Accumulation in Intestinal Cancer Cells. Planta Medica, 2016, 82, 89-96.	1.3	9
18	The metabolism of flubendazole in human liver and cancer cell lines. Drug Testing and Analysis, 2018, 10, 1139-1146.	2.6	9

#	Article	IF	CITATION
19	Oxaliplatin and irinotecan induce heterogenous changes in the EMT markers of metastasizing colorectal carcinoma cells. Experimental Cell Research, 2018, 369, 295-303.	2.6	8
20	Selenium and Colon Cancer – From Chemoprevention to New Treatment Modality. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8, 598-602.	1.7	8
21	The Evaluation of Glioblastoma Cell Dissociation and Its Influence on Its Behavior. International Journal of Molecular Sciences, 2019, 20, 4630.	4.1	7
22	Carbonyl Reduction of Flubendazole in the Human Liver: Strict Stereospecificity, Sex Difference, Low Risk of Drug Interactions. Frontiers in Pharmacology, 2019, 10, 600.	3.5	6
23	Inositol hexaphosphate limits the migration and the invasiveness of colorectal carcinoma cells in vitro. International Journal of Oncology, 2018, 53, 1625-1632.	3.3	4
24	ROS mediate selenite-induced apoptosis in colon cancer cells. Open Life Sciences, 2010, 5, 166-177.	1.4	0