Kyung-Min Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4648959/publications.pdf

Version: 2024-02-01

516710 552781 49 777 16 26 g-index citations h-index papers 49 49 49 927 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dual-channel detection of Cu2+ and Fâ^' with a simple Schiff-based colorimetric and fluorescent sensor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 136, 1649-1657.	3.9	93
2	An Overview of Nanotechnology in Food Science: Preparative Methods, Practical Applications, and Safety. Journal of Chemistry, 2018, 2018, 1-10.	1.9	70
3	Solvent-dependent chromogenic sensing for Cu2+ and fluorogenic sensing for Zn2+ and Al3+: a multifunctional chemosensor with dual-mode. Tetrahedron, 2014, 70, 7429-7438.	1.9	47
4	Erythorbyl laurate as a potential food additive with multi-functionalities: Interfacial characteristics and antioxidant activity. Food Chemistry, 2017, 215, 101-107.	8.2	36
5	Microfluidic assembly of liposomes dual-loaded with catechin and curcumin for enhancing bioavailability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594, 124670.	4.7	35
6	Transcriptomic analysis of Staphylococcus aureus under the stress condition of antibacterial erythorbyl laurate by RNA sequencing. Food Control, 2019, 96, 1-8.	5.5	33
7	Hydrophilic and lipophilic characteristics of non-fatty acid moieties: significant factors affecting antibacterial activity of lauric acid esters. Food Science and Biotechnology, 2018, 27, 401-409.	2.6	32
8	Lipase-catalysed synthesis of erythorbyl laurate in acetonitrile. Food Chemistry, 2011, 129, 59-63.	8.2	31
9	Erythorbyl laurate as a potential food additive with multi-functionalities: Antibacterial activity and mode of action. Food Control, 2018, 86, 138-145.	5 . 5	28
10	A New Method for Determining the Emulsion Stability Index by Backscattering Light Detection. Journal of Food Process Engineering, 2014, 37, 229-236.	2.9	27
11	Microfluidic assembly of mono-dispersed liposome and its surface modification for enhancing the colloidal stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124202.	4.7	25
12	Double-layered microparticles with enzyme-triggered release for the targeted delivery of water-soluble bioactive compounds to small intestine. Food Chemistry, 2014, 161, 53-59.	8.2	20
13	Cysteine Protease Profiles of the Medicinal Plant Calotropis procera R. Br. Revealed by De Novo Transcriptome Analysis. PLoS ONE, 2015, 10, e0119328.	2.5	20
14	Generation of alginate nanoparticles through microfluidics-aided polyelectrolyte complexation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 471, 86-92.	4.7	17
15	Lipase-catalyzed solvent-free synthesis of erythorbyl laurate in a gas-solid-liquid multiphase system. Food Chemistry, 2019, 271, 445-449.	8.2	17
16	A reliable and reproducible method for the lipase assay in an AOT/isooctane reversed micellar system: Modification of the copper-soap colorimetric method. Food Chemistry, 2015, 182, 236-241.	8.2	16
17	An asymmetric naked-eye chemo-sensor for Cu2+ in aqueous solution. Inorganic Chemistry Communication, 2015, 51, 90-94.	3.9	16
18	AOT/isooctane reverse micelles with a microaqueous core act as protective shells for enhancing the thermal stability of Chromobacterium viscosum lipase. Food Chemistry, 2015, 179, 263-269.	8.2	15

#	Article	IF	CITATIONS
19	Inhibitory characteristics of flavonol-3-O-glycosides from Polygonum aviculare L. (common) Tj ETQq1 1 0.78431	4 rgBT (Overlock 10 T
20	Erythorbyl fatty acid ester as a multi-functional food emulsifier: Enzymatic synthesis, chemical identification, and functional characterization of erythorbyl myristate. Food Chemistry, 2021, 353, 129459.	8.2	12
21	Effect of intense pulsed light on the deactivation of lipase: Enzyme-deactivation kinetics and tertiary structural changes by fragmentation. Enzyme and Microbial Technology, 2019, 124, 63-69.	3.2	11
22	Optimal production and structural characterization of erythorbyl laurate obtained through lipase-catalyzed esterification. Food Science and Biotechnology, 2012, 21, 1209-1215.	2.6	10
23	Development of the simple and sensitive method for lipoxygenase assay in AOT/isooctane reversed micelles. Food Chemistry, 2013, 138, 733-738.	8.2	10
24	Lipase-catalyzed synthesis of lauroyl tripeptide-KHA with multi-functionalities: Its surface-active, antibacterial, and antioxidant properties. Food Chemistry, 2020, 319, 126533.	8.2	10
25	Thermal Deactivation Kinetics of Pseudomonas fluorescens Lipase Entrapped in AOT/Isooctane Reverse Micelles. Journal of Agricultural and Food Chemistry, 2013, 61, 9421-9427.	5.2	9
26	Rapid and Sensitive Determination of Lipid Oxidation Using the Reagent Kit Based on Spectrophotometry (FOODLAB <i>fat</i> System). Journal of Chemistry, 2016, 2016, 1-6.	1.9	9
27	Catalytic characteristics of asnâ€1(3) regioselective lipase fromCordyceps militaris. Biotechnology Progress, 2019, 35, e2744.	2.6	9
28	Effects of freezing rate on structural changes in l-lactate dehydrogenase during the freezing process. Scientific Reports, 2021, 11, 13643.	3.3	9
29	Characterization and optimization of carboxylesterase-catalyzed esterification between capric acid and glycerol for the production of 1-monocaprin in reversed micellar system. New Biotechnology, 2010, 27, 46-52.	4.4	8
30	Enhancing operational stability and exhibition of enzyme activity by removing water in the immobilized lipaseâ€catalyzed production of erythorbyl laurate. Biotechnology Progress, 2013, 29, 882-889.	2.6	8
31	Molecular cloning and anti-invasive activity of cathepsin L propeptide-like protein from Calotropis procera R. Br. against cancer cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 657-664.	5.2	8
32	Cloning and protein expression of the sn-1(3) regioselective lipase from Cordyceps militaris. Enzyme and Microbial Technology, 2018, 119, 30-36.	3.2	8
33	Catalytic characterization of heterodimeric linoleate 13S-lipoxygenase from black soybean (Glycine) Tj ETQq 11	0.78 4 3	, 14 rgBT /Overlo
34	Effect of 1-monocaprin addition on the emulsion stability and the storage stability of mayonnaise. Food Science and Biotechnology, 2010, 19, 1227-1232.	2.6	7
35	Microfluidic Preparation of Liposomes Using Ethyl Acetate/ <i>n</i> -Hexane Solvents as an Alternative to Chloroform. Journal of Chemistry, 2018, 2018, 1-6.	1.9	7
36	Antimicrobial Characterization of Erythorbyl Laurate for Practical Applications in Food and Cosmetics. Journal of Chemistry, 2020, 2020, 1-8.	1.9	7

#	Article	IF	CITATIONS
37	Controlled rate slow freezing with lyoprotective agent to retain the integrity of lipid nanovesicles during lyophilization. Scientific Reports, 2021, 11, 24354.	3.3	6
38	Serial connection of packed-bed reactors with different reaction temperatures: enhanced operational stability for enzymatically interesterified trans-free lipid production. European Food Research and Technology, 2012, 235, 647-657.	3.3	5
39	Chemoselective Oxidation of C6 Primary Hydroxyl Groups of Polysaccharides in Rice Bran for the Application as a Novel Water-Soluble Dietary Fiber. International Journal of Food Properties, 2015, 18, 1664-1676.	3.0	5
40	Selective production of 1-monocaprin by porcine liver carboxylesterase-catalyzed esterification: Its enzyme kinetics and catalytic performance. Enzyme and Microbial Technology, 2016, 82, 51-57.	3.2	5
41	Optimization of Spectrophotometric and Fluorometric Assays Using Alternative Substrates for the High-Throughput Screening of Lipase Activity. Journal of Chemistry, 2021, 2021, 1-10.	1.9	5
42	Determination of Odor Release in Hydrocolloid Model Systems Containing Original or Carboxylated Cellulose at Different pH Values Using Static Headspace Gas Chromatographic (SHS-GC) Analysis. Sensors, 2013, 13, 2818-2829.	3.8	2
43	Innovative Strategies and Emerging Technologies for Food Safety. Journal of Chemistry, 2019, 2019, 1-2.	1.9	2
44	Kinetic pH Titration to Predict the Acid and Hydrothermal Conditions for the Hydrolysis of Disaccharides: Use of a Microcapillary System. Journal of Chemistry, 2019, 2019, 1-9.	1.9	2
45	Multi-functional behavior of food emulsifier erythorbyl laurate in different colloidal conditions of homogeneous oil-in-water emulsion system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128127.	4.7	2
46	Optimizing Conditions for TEMPO/NaOCl-Mediated Chemoselective Oxidation of Primary Alcohols in Sweet Potato Residue. Food and Bioprocess Technology, 2013, 6, 690-698.	4.7	1
47	Gas-sensing array application for on-line monitoring in a heat-responsive bioprocess of Streptomyces griseus HUT 6037. Food Science and Biotechnology, 2015, 24, 875-881.	2.6	1
48	Comparative Analysis of Universal Protein Extraction Methodologies for Screening of Lipase Activity from Agricultural Products. Catalysts, 2021, 11, 816.	3.5	1
49	Optimization of conditions for 2,2,6,6-tetramethyl-1-piperidinyl oxoammonium ion/sodium hypochlorite-catalyzed selective oxidation of the primary alcohol in 1-Monolaurin. Food Science and Biotechnology, 2013, 22, 621-629.	2.6	0