
## Dimitri Lavillette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4648615/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mapping cross-variant neutralizing sites on the SARS-CoV-2 spike protein. Emerging Microbes and Infections, 2022, 11, 351-367.                                                                         | 3.0 | 19        |
| 2  | SARS-CoV-2 spike engagement of ACE2 primes S2′ site cleavage and fusion initiation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                      | 3.3 | 60        |
| 3  | Isolation, characterization, and structure-based engineering of a neutralizing nanobody against SARS-CoV-2. International Journal of Biological Macromolecules, 2022, 209, 1379-1388.                  | 3.6 | 3         |
| 4  | Structural Characterization of a Neutralizing Nanobody With Broad Activity Against SARS-CoV-2<br>Variants. Frontiers in Microbiology, 2022, 13, .                                                      | 1.5 | 5         |
| 5  | Zika virus pathogenesis and current therapeutic advances. Pathogens and Global Health, 2021, 115, 21-39.                                                                                               | 1.0 | 23        |
| 6  | The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. Journal of Biological Chemistry, 2021, 296, 100111.   | 1.6 | 211       |
| 7  | Development and structural basis of a two-MAb cocktail for treating SARS-CoV-2 infections. Nature Communications, 2021, 12, 264.                                                                       | 5.8 | 81        |
| 8  | A high-affinity RBD-targeting nanobody improves fusion partner's potency against SARS-CoV-2. PLoS<br>Pathogens, 2021, 17, e1009328.                                                                    | 2.1 | 37        |
| 9  | Elicitation of Broadly Neutralizing Antibodies against B.1.1.7, B.1.351, and B.1.617.1 SARS-CoV-2 Variants by<br>Three Prototype Strain-Derived Recombinant Protein Vaccines. Viruses, 2021, 13, 1421. | 1.5 | 6         |
| 10 | A synthetic nanobody targeting RBD protects hamsters from SARS-CoV-2 infection. Nature Communications, 2021, 12, 4635.                                                                                 | 5.8 | 72        |
| 11 | Uncovering a conserved vulnerability site in SARS oVâ€2 by a human antibody. EMBO Molecular<br>Medicine, 2021, 13, e14544.                                                                             | 3.3 | 17        |
| 12 | Immunization with the receptor-binding domain of SARS-CoV-2 elicits antibodies cross-neutralizing SARS-CoV-2 and SARS-CoV without antibody-dependent enhancement. Cell Discovery, 2020, 6, 61.         | 3.1 | 52        |
| 13 | A new class of broadly neutralizing antibodies that target the glycan loop of Zika virus envelope protein. Cell Discovery, 2020, 6, 5.                                                                 | 3.1 | 20        |
| 14 | Yeast-produced subunit protein vaccine elicits broadly neutralizing antibodies that protect mice against Zika virus lethal infection. Antiviral Research, 2019, 170, 104578.                           | 1.9 | 15        |
| 15 | Comparative study of chikungunya Virus-Like Particles and Pseudotyped-Particles used for serological detection of specific immunoglobulin M. Virology, 2019, 529, 195-204.                             | 1.1 | 10        |
| 16 | Role of Hepatitis C Virus Envelope Glycoprotein E1 in Virus Entry and Assembly. Frontiers in<br>Immunology, 2018, 9, 1411.                                                                             | 2.2 | 33        |
| 17 | Negligible contribution of M2634V substitution to ZIKV pathogenesis in AG6 mice revealed by a bacterial promoter activity reduced infectious clone. Scientific Reports, 2018, 8, 10491.                | 1.6 | 24        |
| 18 | A protein coevolution method uncovers critical features of the Hepatitis C Virus fusion mechanism.<br>PLoS Pathogens, 2018, 14, e1006908.                                                              | 2.1 | 20        |

Dimitri Lavillette

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Co-Infection of Mosquitoes with Chikungunya and Dengue Viruses Reveals Modulation of the<br>Replication of Both Viruses in Midguts and Salivary Glands of Aedes aegypti Mosquitoes. International<br>Journal of Molecular Sciences, 2017, 18, 1708. | 1.8 | 48        |
| 20 | Histone demethylase LSD1 restricts influenza A virus infection by erasing IFITM3-K88 monomethylation.<br>PLoS Pathogens, 2017, 13, e1006773.                                                                                                        | 2.1 | 29        |
| 21 | Specialization of Hepatitis C Virus Envelope Glycoproteins for B Lymphocytes in Chronically Infected<br>Patients. Journal of Virology, 2016, 90, 992-1008.                                                                                          | 1.5 | 9         |
| 22 | The Sheep Tetherin Paralog oBST2B Blocks Envelope Glycoprotein Incorporation into Nascent<br>Retroviral Virions. Journal of Virology, 2015, 89, 535-544.                                                                                            | 1.5 | 9         |
| 23 | The Mechanism of HCV Entry into Host Cells. Progress in Molecular Biology and Translational Science, 2015, 129, 63-107.                                                                                                                             | 0.9 | 89        |
| 24 | New Insights into the Understanding of Hepatitis C Virus Entry and Cell-to-Cell Transmission by Using the Ionophore Monensin A. Journal of Virology, 2015, 89, 8346-8364.                                                                           | 1.5 | 18        |
| 25 | Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood, 2014, 124, 1221-1231.                                                                                                | 0.6 | 109       |
| 26 | Critical interaction between E1 and E2 glycoproteins determines binding and fusion properties of hepatitis C virus during cell entry. Hepatology, 2014, 59, 776-788.                                                                                | 3.6 | 83        |
| 27 | Distinct roles in folding, CD81 receptor binding and viral entry for conserved histidine residues of hepatitis C virus glycoprotein E1 and E2. Biochemical Journal, 2012, 443, 85-94.                                                               | 1.7 | 42        |
| 28 | Identification of Interactions in the E1E2 Heterodimer of Hepatitis C Virus Important for Cell Entry.<br>Journal of Biological Chemistry, 2011, 286, 23865-23876.                                                                                   | 1.6 | 25        |
| 29 | Receptor Complementation and Mutagenesis Reveal SR-BI as an Essential HCV Entry Factor and Functionally Imply Its Intra- and Extra-Cellular Domains. PLoS Pathogens, 2009, 5, e1000310.                                                             | 2.1 | 107       |
| 30 | Characterization of Fusion Determinants Points to the Involvement of Three Discrete Regions of Both<br>E1 and E2 Glycoproteins in the Membrane Fusion Process of Hepatitis C Virus. Journal of Virology,<br>2007, 81, 8752-8765.                    | 1.5 | 157       |
| 31 | Hepatitis C Virus Glycoproteins Mediate Low pH-dependent Membrane Fusion with Liposomes. Journal of Biological Chemistry, 2006, 281, 3909-3917.                                                                                                     | 1.6 | 119       |
| 32 | An Envelope Glycoprotein of the Human Endogenous Retrovirus HERV-W Is Expressed in the Human<br>Placenta and Fuses Cells Expressing the Type D Mammalian Retrovirus Receptor. Journal of Virology,<br>2000, 74, 3321-3329.                          | 1.5 | 611       |
| 33 | Neutralizing Potency of Prototype and Omicron RBD mRNA Vaccines Against Omicron Variant.<br>Frontiers in Immunology, 0, 13, .                                                                                                                       | 2.2 | 6         |