Mauro Moresi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4648550/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental impact of the main household cooking systems—A survey. Italian Journal of Food Science, 2022, 34, 86-113.	2.9	10
2	Carbon Footprint of a Typical Neapolitan Pizzeria. Sustainability, 2022, 14, 3125.	3.2	5
3	Standard methods useable for mitigating the environmental impact of food industry. , 2021, , 1-30.		2
4	Environmental impact of dry pasta using different standard methods. , 2021, , 101-127.		0
5	Effect of cooking temperature on cooked pasta quality and sustainability. Journal of the Science of Food and Agriculture, 2021, 101, 4946-4958.	3.5	5
6	Carbon footprint of different methods of coffee preparation. Sustainable Production and Consumption, 2021, 27, 1614-1625.	11.0	6
7	Circular economy in the brewing chain. Italian Journal of Food Science, 2021, 33, 47-69.	2.9	7
8	Innovative Rough Beer Conditioning Process Free from Diatomaceous Earth and Polyvinylpolypyrrolidone. Foods, 2020, 9, 1228.	4.3	3
9	Development and assessment of a home eco-sustainable pasta cooker. Food and Bioproducts Processing, 2020, 122, 291-302.	3.6	6
10	Effect of β-glucan enrichment on the sensory properties of fresh egg white pasta. LWT - Food Science and Technology, 2020, 130, 109654.	5.2	5
11	Reducing the cooking waterâ€toâ€dried pasta ratio and environmental impact of pasta cooking. Journal of the Science of Food and Agriculture, 2019, 99, 1258-1266.	3.5	12
12	Cradleâ€ŧoâ€grave carbon footprint of dried organic pasta: assessment and potential mitigation measures. Journal of the Science of Food and Agriculture, 2019, 99, 5303-5318.	3.5	13
13	Commercial short-cut extruded pasta: Cooking quality and carbon footprint vs. water-to-pasta ratio. Food and Bioproducts Processing, 2019, 116, 150-159.	3.6	9
14	Cooking quality of commercial spaghetti: effect of the water-to-dried pasta ratio. European Food Research and Technology, 2019, 245, 1037-1045.	3.3	10
15	Are the present standard methods effectively useful to mitigate the environmental impact of the 99% EU food and drink enterprises?. Trends in Food Science and Technology, 2018, 77, 42-53.	15.1	19
16	Towards a Kieselguhr―and PVPPâ€Free Clarification and Stabilization Process of Rough Beer at Roomâ€Temperature Conditions. Journal of Food Science, 2018, 83, 129-137.	3.1	3
17	Combined enzymatic and crossflow microfiltration process to assure the colloidal stability of beer. LWT - Food Science and Technology, 2018, 90, 132-137.	5.2	7
18	Effect of Brewery Size on the Main Process Parameters and Cradleâ€toâ€Grave Carbon Footprint of Lager Beer. Journal of Industrial Ecology, 2018, 22, 1139-1155.	5.5	18

#	Article	IF	CITATIONS
19	Mitigation measures to minimize the cradle-to-grave beer carbon footprint as related to the brewery size and primary packaging materials. Journal of Food Engineering, 2018, 236, 1-8.	5.2	15
20	Energy efficiency and carbon footprint of home pasta cooking appliances. Journal of Food Engineering, 2017, 204, 8-17.	5.2	21
21	Assessing the Potential Content of Ethyl Carbamate in White, Red, and Rosé Wines as a Key Factor for Pursuing Urea Degradation by Purified Acid Urease. Journal of Food Science, 2016, 81, C1603-12.	3.1	19
22	A Low-Cost Image Analysis System to Upgrade the Rudin Beer Foam Head Retention Meter. Food and Bioprocess Technology, 2016, 9, 1587-1597.	4.7	12
23	Beer Clarification by Novel Ceramic Hollowâ€Fiber Membranes: Effect of Pore Size on Product Quality. Journal of Food Science, 2016, 81, E2521-E2528.	3.1	10
24	Assessment of the optimal operating conditions for pale lager clarification using novel ceramic hollow-fiber membranes. Journal of Food Engineering, 2016, 173, 132-142.	5.2	12
25	Assessment of the energy needs for the arsenic remediation of drinking water by electrodialysis. Desalination and Water Treatment, 2016, 57, 19475-19487.	1.0	3
26	Carbon footprint of a pale lager packed in different formats: assessment and sensitivity analysis based on transparent data. Journal of Cleaner Production, 2016, 112, 4196-4213.	9.3	33
27	High Solid Loading in Dilute Acid Hydrolysis of Orange Peel Waste Improves Ethanol Production. Bioenergy Research, 2015, 8, 1292-1302.	3.9	15
28	Pale Lager Clarification Using Novel Ceramic Hollow-Fiber Membranes and CO2 Backflush Program. Food and Bioprocess Technology, 2015, 8, 2212-2224.	4.7	9
29	Novel cold sterilization and stabilization process applied to a pale lager. Journal of Food Engineering, 2015, 145, 1-9.	5.2	13
30	Ethanol production from xerophilic and salt-resistant Tamarix jordanis biomass. Biomass and Bioenergy, 2014, 61, 73-81.	5.7	21
31	Orange peel pretreatment in a novel lab-scale direct steam-injection apparatus for ethanol production. Biomass and Bioenergy, 2014, 61, 146-156.	5.7	44
32	Novel Procedure for Lager Beer Clarification and Stabilization Using Sequential Enzymatic, Centrifugal, Regenerable PVPP and Crossflow Microfiltration Processing. Food and Bioprocess Technology, 2014, 7, 3156-3165.	4.7	11
33	Beer Clarification Using Ceramic Tubular Membranes. Food and Bioprocess Technology, 2014, 7, 2694-2710.	4.7	23
34	Internal and external mass transfer limitations on the activity of immobilised acid urease derivatives differing in enzyme loading. Biochemical Engineering Journal, 2014, 82, 22-33.	3.6	13
35	Screening, isolation, and characterization of glycosyl-hydrolase-producing fungi from desert halophyte plants. International Microbiology, 2014, 17, 41-8.	2.4	5
36	Modelling of Soy Sauce Desalting by Electrodialysis. Food and Bioprocess Technology, 2013, 6, 1681-1695.	4.7	8

#	Article	lF	CITATIONS
37	Concentration of trisodium citrate by electrodialysis. Journal of Membrane Science, 2013, 447, 376-386.	8.2	15
38	Assessment of qualityâ€assured Tarocco orange fruit sorting rules by combined physicochemical and sensory testing. Journal of the Science of Food and Agriculture, 2013, 93, 1176-1183.	3.5	7
39	Development and testing of a novel lab-scale direct steam-injection apparatus to hydrolyse model and saline crop slurries. Journal of Biotechnology, 2012, 157, 590-597.	3.8	5
40	Viscoelastic Properties of Tarocco Orange Fruit. Food and Bioprocess Technology, 2012, 5, 2360-2369.	4.7	5
41	Immobilization/stabilization of acid urease on Eupergit® supports. Biotechnology Progress, 2012, 28, 1232-1244.	2.6	16
42	Soy sauce desalting by electrodialysis. Journal of Food Engineering, 2012, 110, 175-181.	5.2	29
43	Electrodialytic desalting of model concentrated NaCl brines as such or enriched with a non-electrolyte osmotic component. Journal of Membrane Science, 2011, 367, 220-232.	8.2	37
44	Assessment of the mechanical properties of Tarocco orange fruit under parallel plate compression. Journal of Food Engineering, 2011, 103, 308-316.	5.2	26
45	Application of the Nernst–Planck approach to model the electrodialytic recovery of disodium itaconate. Journal of Membrane Science, 2010, 349, 393-404.	8.2	28
46	Urea degradation kinetics in model wine solutions by acid urease immobilised onto chitosan-derivative beads of different sizes. Enzyme and Microbial Technology, 2010, 46, 397-405.	3.2	19
47	Urea Degradation in Some White Wines by Immobilized Acid Urease in a Stirred Bioreactor. Journal of Agricultural and Food Chemistry, 2010, 58, 6747-6753.	5.2	16
48	Experimental strategy to assess the main engineering parameters characterizing sodium alginate recovery from model solutions by ceramic tubular ultrafiltration membrane modules. Journal of Membrane Science, 2009, 326, 441-452.	8.2	4
49	Urea Degradation in Model Wine Solutions by Free or Immobilized Acid Urease in a Stirred Bioreactor. Journal of Agricultural and Food Chemistry, 2009, 57, 3533-3542.	5.2	22
50	Role of constituents on the network formation of hydrocolloid edible films. Journal of Food Engineering, 2008, 89, 195-203.	5.2	22
51	Pectin recovery from model solutions using a laboratory-scale ceramic tubular UF membrane module. Journal of Membrane Science, 2008, 322, 349-359.	8.2	11
52	Engineering Properties of Edible Transglutaminase Cross-Linked Caseinate-Based Films. Food and Bioprocess Technology, 2008, 1, 393-404.	4.7	19
53	Modeling of Urea Degradation in White and Rosé Wines by Acid Urease. Journal of Agricultural and Food Chemistry, 2007, 55, 2590-2596.	5.2	26
54	Enhanced production of Î ² -glucan from Botryosphaeria rhodina using emulsified media or fan impellers. Enzyme and Microbial Technology, 2007, 41, 111-120.	3.2	7

#	Article	IF	CITATIONS
55	Production of ?-glucan and related glucan-hydrolases by Botryosphaeria rhodina. Journal of Applied Microbiology, 2007, 102, 860-871.	3.1	12
56	Production of alizarin extracts from Rubia tinctorum and assessment of their dyeing properties. Industrial Crops and Products, 2007, 26, 151-162.	5.2	81
57	Characterisation of alginate gels using quasi-static and dynamic methods. Journal of Food Engineering, 2007, 82, 298-309.	5.2	37
58	Electrodialysis Applications in The Food Industry. Advances in Food and Nutrition Research, 2006, 51, 265-360.	3.0	84
59	Assessment of Urea Degradation Rate in Model Wine Solutions by Acid Urease fromLactobacillus fermentum. Journal of Agricultural and Food Chemistry, 2006, 54, 6226-6235.	5.2	47
60	Assessment of the main engineering parameters controlling the electrodialytic recovery of sodium propionate from aqueous solutions. Journal of Food Engineering, 2006, 76, 218-231.	5.2	26
61	Optimal strategy to model the electrodialytic recovery of a strong electrolyte. Journal of Membrane Science, 2005, 260, 90-111.	8.2	99
62	INTERRELATIONSHIP BETWEEN THE TRANSIENT FUNCTIONS OF BOLOGNA USING FRIEDRICH AND HEYMANN THEORY. Journal of Texture Studies, 2005, 36, 1-24.	2.5	7
63	Modeling of sodium acetate recovery from aqueous solutions by electrodialysis. Biotechnology and Bioengineering, 2005, 91, 556-568.	3.3	31
64	Assessment of the dyeing properties of pigments fromMonascus purpureus. Journal of Chemical Technology and Biotechnology, 2005, 80, 1072-1079.	3.2	47
65	Modelling the electrodialytic recovery of sodium lactate. Biotechnology and Applied Biochemistry, 2004, 40, 123.	3.1	18
66	Viscoelastic properties of Bologna sausages by dynamic methods. Journal of Food Engineering, 2004, 63, 291-298.	5.2	31
67	Viscoelastic properties of microbial alginate gels by oscillatory dynamic tests. Journal of Food Engineering, 2004, 64, 179-186.	5.2	47
68	Overall volumetric oxygen transfer coefficient in an aerated bench-top stirred fermenter in aqueous dispersions of sodium alginate. Biotechnology and Applied Biochemistry, 2004, 40, 133.	3.1	9
69	Ammonium fumarate production by free or immobilisedRhizopus arrhizus in bench- and laboratory-scale bioreactors. Journal of Chemical Technology and Biotechnology, 2002, 77, 1013-1024.	3.2	7
70	Production of luteolin extracts fromReseda luteola and assessment of their dyeing properties. Journal of the Science of Food and Agriculture, 2002, 82, 1189-1199.	3.5	39
71	Modelling of ammonium fumarate recovery from model solutions by nanofiltration and reverse osmosis. Journal of Membrane Science, 2002, 209, 405-420.	8.2	17
72	Rheology of scleroglucan dispersions. Journal of Food Engineering, 2001, 50, 235-245.	5.2	36

#	Article	IF	CITATIONS
73	VISCOELASTIC PROPERTIES OF ALGINATE GELS BY OSCILLATORY DYNAMIC TESTS. Journal of Texture Studies, 2001, 32, 375-396.	2.5	21
74	Recovery of selected microbial metabolites from model solutions by reverse osmosis. Journal of Membrane Science, 2000, 174, 243-253.	8.2	6
75	Electrodialytic recovery of some fermentation products from model solutions: techno-economic feasibility study. Journal of Membrane Science, 2000, 164, 129-140.	8.2	25
76	Rheological behaviour of baker's yeast suspensions. Journal of Food Engineering, 2000, 44, 225-231.	5.2	20
77	Recovery of sodium gluconate from model solutions by reverse osmosis. Journal of Food Engineering, 2000, 44, 109-117.	5.2	7
78	Effect of pH and stirring rate on itaconate production by Aspergillus terreus. Journal of Biotechnology, 2000, 83, 219-230.	3.8	70
79	Mechanical properties of alginate gels: empirical characterisation. Journal of Food Engineering, 1999, 39, 369-378.	5.2	128
80	UNIAXIAL COMPRESSION AND STRESS RELAXATION TESTS ON ALGINATE GELS. Journal of Texture Studies, 1999, 30, 639-657.	2.5	34
81	Production and characterisation of alginate fromAzotobacter vinelandii. Journal of the Science of Food and Agriculture, 1999, 79, 602-610.	3.5	28
82	Alginate from Azotobacter vinelandii. Methods in Biotechnology, 1999, , 23-42.	0.2	3
83	Effect of some operating variables on citrate recovery from model solutions by electrodialysis. , 1998, 59, 344-350.		15
84	Economic feasibility study of citrate recovery by electrodialysis. Journal of Food Engineering, 1998, 35, 75-90.	5.2	32
85	Rheology of alginate from Azotobacter vinelandii in aqueous dispersions. Journal of Food Engineering, 1998, 36, 51-62.	5.2	52
86	Rheological behaviour of aqueous dispersions of algal sodium alginates. Journal of Food Engineering, 1996, 28, 283-295.	5.2	81
87	Effect of some physico-chemical treatments on the kinetics of autolysed-yeast extract production from whey. Journal of the Science of Food and Agriculture, 1995, 67, 347-357.	3.5	9
88	Optimal conditions for alginate production by Azotobacter vinelandii. Enzyme and Microbial Technology, 1995, 17, 983-988.	3.2	43
89	Effect of glucose concentration on citric acid production byYarrowia lipolytica. Journal of Chemical Technology and Biotechnology, 1994, 60, 387-395.	3.2	33
90	Effect of temperature and yeast concentration on the autolysis of Kluyverommyces fragilis grown on lactose-based media. Journal of Food Engineering, 1994, 21, 245-261.	5.2	19

#	Article	IF	CITATIONS
91	Optimization of fumaric acid production from potato flour by Rhizopus arrhizus. Applied Microbiology and Biotechnology, 1991, 36, 35-39.	3.6	41
92	Modelling of cyclic fed-batch plus batch polygalacturonase production by Aureobasidium pullulans on raw orange peel. Applied Microbiology and Biotechnology, 1991, 34, 742.	3.6	8
93	Effect of dissolved oxygen concentration on repeated production of gluconic acid by immobilised mycelia of Aspergillus niger. Applied Microbiology and Biotechnology, 1991, 36, 320.	3.6	17
94	Kinetics of continuous whey fermentation by <i>Kluyveromyces fragilis</i> . Journal of Chemical Technology and Biotechnology, 1990, 49, 205-222.	3.2	22
95	Scaling-up of a batch whey fermentation by Kluyveromyces fragilis. Applied Microbiology and Biotechnology, 1989, 31-31, 495-501.	3.6	12
96	Prediction of <i>k</i> _L <i>a</i> in conventional stirred fermenters. Journal of Chemical Technology and Biotechnology, 1988, 42, 197-210.	3.2	16
97	Production of biomass from untreated orange peel by Fusarium avenaceum. Applied Microbiology and Biotechnology, 1987, 27, 37.	3.6	7
98	Kinetics of untreated orange peel utilisation by fusarium avenaceum. Journal of Chemical Technology and Biotechnology, 1987, 40, 233-249.	3.2	5
99	Effect of medium composition on microbial utilisation of citrus waste by mixed fungal culture. Applied Microbiology and Biotechnology, 1985, 22, 26.	3.6	11
100	Study on the operating variables of sulcis coal hydroliquefaction. Fuel Processing Technology, 1985, 10, 145-161.	7.2	1
101	Optimal batch hydroliquefaction of sulcis coal. Fuel, 1985, 64, 674-677.	6.4	2
102	Investigation on the operating, variables of potato starch fermentation by Schwanniomyces castellii. European Journal of Applied Microbiology and Biotechnology, 1983, 18, 92-99.	1.3	10
103	The ejector-loop fermenter: Description and performance of the apparatus. Biotechnology and Bioengineering, 1983, 25, 2889-2904.	3.3	17
104	Modelling of multipleâ€effect fallingâ€film evaporators. International Journal of Food Science and Technology, 1983, 18, 539-563.	2.7	16
105	Preliminary study on the operating variables of SCP production from grape must. European Journal of Applied Microbiology and Biotechnology, 1982, 16, 204-207.	1.3	6
106	Yeast Production from Whey. Studies in Environmental Science, 1981, 9, 37-53.	0.0	1
107	Optimal design of airlift fermenters. Biotechnology and Bioengineering, 1981, 23, 2537-2560.	3.3	30
108	Scale-up of whey fermentation in a pilot-scale fermenter. European Journal of Applied Microbiology and Biotechnology, 1981, 12, 173-178.	1.3	14

#	Article	IF	CITATIONS
109	Modelling of the process yields of a whey fermentation. European Journal of Applied Microbiology and Biotechnology, 1981, 13, 1-9.	1.3	12
110	Optimization of whey fermentation in a jar fermenter. European Journal of Applied Microbiology and Biotechnology, 1980, 9, 173-183.	1.3	23
111	Chemical oxygen demand reduction in a whey fermentation. European Journal of Applied Microbiology and Biotechnology, 1980, 9, 261-274.	1.3	13
112	Strategy to obtain semi-empirical correlations for deterministic systems. Chemical Engineering Science, 1980, 35, 737-741.	3.8	0
113	Kinetics of citric acid fermentation from <i>n</i> â€paraffins by yeasts. Journal of Chemical Technology and Biotechnology, 1980, 30, 266-277.	0.2	17
114	Factor analysis in a whey fermentation by Kluyveromyces fragilis. European Journal of Applied Microbiology and Biotechnology, 1979, 8, 49-61.	1.3	10
115	Optimization of whey fermentation in a shaken-flask fermenter. European Journal of Applied Microbiology and Biotechnology, 1979, 8, 63-71.	1.3	14