
Larisa Florea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4647653/publications.pdf Version: 2024-02-01

LADISA FLODEA

#	Article	IF	CITATIONS
1	Glucose Sensing for Diabetes Monitoring: Recent Developments. Sensors, 2017, 17, 1866.	2.1	546
2	Advances in wearable chemical sensor design for monitoring biological fluids. Sensors and Actuators B: Chemical, 2015, 211, 403-418.	4.0	249
3	Spiropyran based hydrogels actuators—Walking in the light. Sensors and Actuators B: Chemical, 2017, 250, 608-616.	4.0	105
4	Photoâ€Responsive Polymeric Structures Based on Spiropyran. Macromolecular Materials and Engineering, 2012, 297, 1148-1159.	1.7	102
5	Direct Laser Writing of Four-Dimensional Structural Color Microactuators Using a Photonic Photoresist. ACS Nano, 2020, 14, 9832-9839.	7.3	89
6	Self-protonating spiropyran-co-NIPAM-co-acrylic acid hydrogel photoactuators. Soft Matter, 2013, 9, 8754.	1.2	83
7	Spiropyran Polymeric Microcapillary Coatings for Photodetection of Solvent Polarity. Langmuir, 2013, 29, 2790-2797.	1.6	66
8	Photoâ€Chemopropulsion – Lightâ€Stimulated Movement of Microdroplets. Advanced Materials, 2014, 26, 7339-7345.	11.1	64
9	Photoswitchable Ratchet Surface Topographies Based on Self-Protonating Spiropyran–NIPAAM Hydrogels. ACS Applied Materials & Interfaces, 2014, 6, 7268-7274.	4.0	64
10	Thiol-Ene Photo-Click Collagen-PEG Hydrogels: Impact of Water-Soluble Photoinitiators on Cell Viability, Gelation Kinetics and Rheological Properties. Polymers, 2017, 9, 226.	2.0	60
11	Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon poly(ionic liquid)s. Materials Today, 2018, 21, 807-816.	8.3	57
12	Dynamic pH mapping in microfluidic devices by integrating adaptive coatings based on polyaniline with colorimetric imaging techniques. Lab on A Chip, 2013, 13, 1079.	3.1	49
13	Moving Droplets in 3D Using Light. Advanced Materials, 2018, 30, e1801821.	11.1	49
14	Big data and machine learning for materials science. Discover Materials, 2021, 1, 12.	1.0	49
15	Synthesis and characterisation of spiropyran-polymer brushes in micro-capillaries: Towards an integrated optical sensor for continuous flow analysis. Sensors and Actuators B: Chemical, 2012, 175, 92-99.	4.0	45
16	Ionic liquid modulation of swelling and LCST behavior of N-isopropylacrylamide polymer gels. Physical Chemistry Chemical Physics, 2014, 16, 3610.	1.3	33
17	Temperatureâ€Responsive 4D Liquid Crystal Microactuators Fabricated by Direct Laser Writing by Twoâ€Photon Polymerization. Small Structures, 2022, 3, 2100158.	6.9	32
18	Self-propelled chemotactic ionic liquid droplets. Chemical Communications, 2015, 51, 2342-2344.	2.2	31

LARISA FLOREA

#	Article	IF	CITATIONS
19	Porous self-protonating spiropyran-based NIPAAm gels with improved reswelling kinetics. Journal of Materials Science, 2016, 51, 1392-1399.	1.7	31
20	Swelling and Shrinking Properties of Thermo-Responsive Polymeric Ionic Liquid Hydrogels with Embedded Linear pNIPAAM. International Journal of Molecular Sciences, 2014, 15, 5337-5349.	1.8	27
21	Poly(Ionic Liquid) Semi-Interpenetrating Network Multi-Responsive Hydrogels. Sensors, 2016, 16, 219.	2.1	27
22	Poly(ionic liquid) thermo-responsive hydrogel microfluidic actuators. Sensors and Actuators B: Chemical, 2017, 247, 749-755.	4.0	27
23	Driving flows in microfluidic paper-based analytical devices with a cholinium based poly(ionic liquid) hydrogel. Sensors and Actuators B: Chemical, 2018, 261, 372-378.	4.0	27
24	Paper based electronic tongue – a low-cost solution for the distinction of sugar type and apple juice brand. Analyst, The, 2019, 144, 2827-2832.	1.7	25
25	Impedance spectroscopy for monosaccharides detection using responsive hydrogel modified paper-based electrodes. Analyst, The, 2017, 142, 1133-1139.	1.7	24
26	Self-assembled solvato-morphologically controlled photochromic crystals. Chemical Communications, 2014, 50, 924-926.	2.2	20
27	Direct laser writing of vapour-responsive photonic arrays. Journal of Materials Chemistry C, 2021, 9, 11674-11678.	2.7	19
28	Temperature and pH triggered release characteristics of water/fluorescein from 1-ethyl-3-methylimidazolium ethylsulfate based ionogels. Chemical Communications, 2013, 49, 4613.	2.2	17
29	Microcantilever arrays functionalised with spiropyran photoactive moieties as systems to measure photo-induced surface stress changes. Sensors and Actuators B: Chemical, 2016, 237, 479-486.	4.0	17
30	Fluorescent Probes for Sugar Detection. ACS Applied Materials & amp; Interfaces, 2018, 10, 38431-38437.	4.0	16
31	Solvato-morphologically controlled, reversible NIPAAm hydrogel photoactuators. RSC Advances, 2016, 6, 83296-83302.	1.7	15
32	Reusable ionogel-based photo-actuators in a lab-on-a-disc. Sensors and Actuators B: Chemical, 2018, 257, 963-970.	4.0	15
33	Electrotactic ionic liquid droplets. Sensors and Actuators B: Chemical, 2017, 239, 1069-1075.	4.0	14
34	Micro-Capillary Coatings Based on Spiropyran Polymeric Brushes for Metal Ion Binding, Detection, and Release in Continuous Flow. Sensors, 2018, 18, 1083.	2.1	14
35	Photoswitchable Layer-by-Layer Coatings Based on Photochromic Polynorbornenes Bearing Spiropyran Side Groups. Langmuir, 2018, 34, 4210-4216.	1.6	13
36	Polyaniline coated micro-capillaries for continuous flow analysis of aqueous solutions. Analytica Chimica Acta, 2013, 759, 1-7.	2.6	12

LARISA FLOREA

#	Article	IF	CITATIONS
37	Direct Laser Writing to Generate Molds for Polymer Nanopillar Replication. ACS Applied Polymer Materials, 2020, 2, 3632-3641.	2.0	11
38	Silicon Microcantilever Sensors to Detect the Reversible Conformational Change of a Molecular Switch, Spiropyan. Sensors, 2020, 20, 854.	2.1	11
39	Textile chemiresistors with sensitive layers based on polymer ionic liquids: Applicability for detection of toxic gases and chemical warfare agents. Sensors and Actuators B: Chemical, 2018, 266, 830-840.	4.0	9
40	3D Printed Sugarâ€ S ensing Hydrogels. Macromolecular Rapid Communications, 2020, 41, e1900610.	2.0	8
41	Adaptive coatings based on polyaniline for direct 2D observation of diffusion processes in microfluidic systems. Sensors and Actuators B: Chemical, 2016, 231, 744-751.	4.0	7
42	Dual Droplet Functionality: Phototaxis and Photopolymerization. ACS Applied Materials & Interfaces, 2019, 11, 31484-31489.	4.0	6
43	Photo-Detection of Solvent Polarities using Non-Invasive Coatings in Capillaries. Procedia Engineering, 2011, 25, 1545-1548.	1.2	5
44	Magnetic movement under the spotlight. Science Robotics, 2020, 5, .	9.9	3
45	Opto-Smart Systems in Microfluidics. Advances in Chemical and Materials Engineering Book Series, 2016, , 265-288.	0.2	2
46	Stimuli-Controlled Fluid Control and Microvehicle Movement in Microfluidic Channels. , 2017, , .		1
47	Boronic Acid Homopolymers as Effective Polycations for Sugar-Responsive Layer-by-Layer Assemblies. ACS Applied Polymer Materials, 2019, 1, 990-996.	2.0	1
48	Stimuli-Controlled Manipulation of Synthetic Micrometre-Sized Vehicles for Bio-Inspired Fluidics. Proceedings (mdpi), 2017, 1, .	0.2	0
49	Stimuli-Responsive Materials and Biomimetic Fluidics: Fundamental Building Blocks of Chemical Sensing Platforms with Futuristic Capabilities. Proceedings (mdpi), 2017, 1, 769.	0.2	0
50	Stimuli-Controlled Fluid Control and Microvehicle Movement in Microfluidic Channels. , 2022, , 128-157.		0