## Helena Lundberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4647628/publications.pdf Version: 2024-02-01



HELENA LUNDRERC

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Catalytic amide formation from non-activated carboxylic acids and amines. Chemical Society Reviews, 2014, 43, 2714-2742.                                                                                                               | 38.1 | 504       |
| 2  | Hindered dialkyl ether synthesis with electrogenerated carbocations. Nature, 2019, 573, 398-402.                                                                                                                                       | 27.8 | 240       |
| 3  | Direct Amide Coupling of Nonâ€activated Carboxylic Acids and Amines Catalysed by Zirconium(IV)<br>Chloride. Chemistry - A European Journal, 2012, 18, 3822-3826.                                                                       | 3.3  | 167       |
| 4  | Organic Electrosynthesis: Applications in Complex Molecule Synthesis. ChemElectroChem, 2019, 6, 4067-4092.                                                                                                                             | 3.4  | 143       |
| 5  | Cu-Catalyzed Decarboxylative Borylation. ACS Catalysis, 2018, 8, 9537-9542.                                                                                                                                                            | 11.2 | 126       |
| 6  | Kinetically guided radical-based synthesis of C(sp <sup>3</sup> )â^'C(sp <sup>3</sup> ) linkages on DNA.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,<br>E6404-E6410.                | 7.1  | 124       |
| 7  | Metal-Free <i>N</i> -Arylation of Secondary Amides at Room Temperature. Organic Letters, 2015, 17, 2688-2691.                                                                                                                          | 4.6  | 103       |
| 8  | Hafnium-Catalyzed Direct Amide Formation at Room Temperature. ACS Catalysis, 2015, 5, 3271-3277.                                                                                                                                       | 11.2 | 100       |
| 9  | Rhodium-catalysed isomerisation of allylic alcohols in water at ambient temperature. Green Chemistry, 2010, 12, 1628.                                                                                                                  | 9.0  | 70        |
| 10 | Mechanistic Elucidation of Zirconium-Catalyzed Direct Amidation. Journal of the American Chemical Society, 2017, 139, 2286-2295.                                                                                                       | 13.7 | 70        |
| 11 | Titanium(IV) Isopropoxide as an Efficient Catalyst for Direct Amidation of Nonactivated Carboxylic<br>Acids. Synlett, 2012, 23, 2201-2204.                                                                                             | 1.8  | 53        |
| 12 | Ruthenium-catalyzed asymmetric transfer hydrogenation of ketones in ethanol. Tetrahedron Letters,<br>2011, 52, 2754-2758.                                                                                                              | 1.4  | 52        |
| 13 | Direct Catalytic Formation of Primary and Tertiary Amides from Nonâ€Activated Carboxylic Acids,<br>Employing Carbamates as Amine Source. Advanced Synthesis and Catalysis, 2012, 354, 2531-2536.                                       | 4.3  | 43        |
| 14 | Tandem αâ€Alkylation/Asymmetric Transfer Hydrogenation of Acetophenones with Primary Alcohols.<br>European Journal of Organic Chemistry, 2014, 2014, 6639-6642.                                                                        | 2.4  | 38        |
| 15 | Rutheniumâ€Catalyzed Tandemâ€Isomerization/Asymmetric Transfer Hydrogenation of Allylic Alcohols.<br>Chemistry - A European Journal, 2014, 20, 16102-16106.                                                                            | 3.3  | 34        |
| 16 | High Throughput Screening of a Catalyst Library for the Asymmetric Transfer Hydrogenation of<br>Heteroaromatic Ketones: Formal Syntheses of ( <i>R</i> )â€Fluoxetine and ( <i>S</i> )â€Duloxetine.<br>ChemCatChem, 2012, 4, 2082-2089. | 3.7  | 30        |
| 17 | Recent Advances in Asymmetric Catalytic Electrosynthesis. Catalysts, 2020, 10, 982.                                                                                                                                                    | 3.5  | 30        |
| 18 | Single Site Supported Cationic Rhodium(I) Complexes for the Selective Redox Isomerization of Allylic Alcohols. ChemCatChem, 2012, 4, 243-250.                                                                                          | 3.7  | 23        |

Helena Lundberg

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Zirconium catalyzed amide formation without water scavenging. Applied Organometallic Chemistry, 2019, 33, e5062.                                                                     | 3.5 | 22        |
| 20 | Catalytic α-Alkylation/Reduction of Ketones with Primary Alcohols To Furnish Secondary Alcohols.<br>Synthesis, 2016, 48, 644-652.                                                    | 2.3 | 21        |
| 21 | Ruthenium atalyzed Asymmetric Transfer Hydrogenation of Propargylic Ketones. ChemCatChem, 2015,<br>7, 3818-3821.                                                                     | 3.7 | 12        |
| 22 | Kinetic Analysis as an Optimization Tool for Catalytic Esterification with a Moisture-Tolerant<br>Zirconium Complex. Journal of Organic Chemistry, 2020, 85, 6959-6969.              | 3.2 | 12        |
| 23 | Zirconium-catalysed direct substitution of alcohols: enhancing the selectivity by kinetic analysis.<br>Catalysis Science and Technology, 2021, 11, 7420-7430.                        | 4.1 | 5         |
| 24 | Zirconium (IV) Chloride Catalyzed Amide Formation From Carboxylic acid and Amine: (S)-tert-Butyl<br>2-(Benzylcarbamoyl)pyrrolidine-1-carboxylate. Organic Syntheses, 0, 92, 227-236. | 1.0 | 5         |