
Ayse Asatekin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4647620/publications.pdf Version: 2024-02-01

AVSE ASATEKIN

#	Article	IF	CITATIONS
1	Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. Journal of Membrane Science, 2007, 298, 136-146.	4.1	404
2	Chemical Vapor Deposition of Conformal, Functional, and Responsive Polymer Films. Advanced Materials, 2010, 22, 1993-2027.	11.1	329
3	Antifouling nanofiltration membranes for membrane bioreactors from self-assembling graft copolymers. Journal of Membrane Science, 2006, 285, 81-89.	4.1	226
4	Oil Industry Wastewater Treatment with Fouling Resistant Membranes Containing Amphiphilic Comb Copolymers. Environmental Science & Technology, 2009, 43, 4487-4492.	4.6	205
5	Protein antifouling mechanisms of PAN UF membranes incorporating PAN-g-PEO additive. Journal of Membrane Science, 2007, 296, 42-50.	4.1	194
6	Simple Surface Modification of Poly(dimethylsiloxane) via Surface Segregating Smart Polymers for Biomicrofluidics. Scientific Reports, 2019, 9, 7377.	1.6	144
7	Polymeric Nanopore Membranes for Hydrophobicity-Based Separations by Conformal Initiated Chemical Vapor Deposition. Nano Letters, 2011, 11, 677-686.	4.5	138
8	Self-Assembling Zwitterionic Copolymers as Membrane Selective Layers with Excellent Fouling Resistance: Effect of Zwitterion Chemistry. ACS Applied Materials & Interfaces, 2017, 9, 20859-20872.	4.0	138
9	Designing polymer surfaces via vapor deposition. Materials Today, 2010, 13, 26-33.	8.3	123
10	Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology. Technology, 2017, 05, 1-12.	1.4	120
11	Zwitterionic copolymer self-assembly for fouling resistant, high flux membranes with size-based small molecule selectivity. Journal of Membrane Science, 2015, 493, 755-765.	4.1	119
12	Zwitterion-containing polymer additives for fouling resistant ultrafiltration membranes. Journal of Membrane Science, 2017, 533, 141-159.	4.1	103
13	Fouling resistant, high flux nanofiltration membranes from polyacrylonitrile-graft-poly(ethylene) Tj ETQq1 1 0.78	4314 rgBT 4.1	/Overlock 10
14	Ultrafiltration Membranes Incorporating Amphiphilic Comb Copolymer Additives Prevent Irreversible Adhesion of Bacteria. Environmental Science & Technology, 2010, 44, 2406-2411.	4.6	85
15	Design of conformal, substrate-independent surface modification for controlled proteinadsorption by chemical vapor deposition (CVD). Soft Matter, 2012, 8, 31-43.	1.2	80
16	Controlling and Expanding the Selectivity of Filtration Membranes. Chemistry of Materials, 2018, 30, 7328-7354.	3.2	70
17	Extremely fouling resistant zwitterionic copolymer membranes with ~ 1 nm pore size for treating municipal, oily and textile wastewater streams. Journal of Membrane Science, 2017, 543, 184-194.	4.1	69
18	Selective Transport through Membranes with Charged Nanochannels Formed by Scalable Self-Assembly of Random Copolymer Micelles. ACS Nano, 2018, 12, 95-108.	7.3	64

Ayse Asatekin

#	Article	IF	CITATIONS
19	Zwitterion-Containing lonogel Electrolytes. Chemistry of Materials, 2016, 28, 8480-8483.	3.2	60
20	Zwitterionic copolymer additive architecture affects membrane performance: fouling resistance and surface rearrangement in saline solutions. Journal of Materials Chemistry A, 2019, 7, 4829-4846.	5.2	55
21	Solâ^'Gel Synthesis of Vanadium Oxide within a Block Copolymer Matrix. Chemistry of Materials, 2006, 18, 2828-2833.	3.2	51
22	Hydrophobic Antifouling Electrospun Mats from Zwitterionic Amphiphilic Copolymers. ACS Applied Materials & Interfaces, 2018, 10, 18300-18309.	4.0	47
23	Superoleophilic, Mechanically Strong Electrospun Membranes for Fast and Efficient Gravity-Driven Oil/Water Separation. ACS Applied Polymer Materials, 2019, 1, 765-776.	2.0	45
24	Self-Cleaning Membranes from Comb-Shaped Copolymers with Photoresponsive Side Groups. ACS Applied Materials & Interfaces, 2017, 9, 13619-13631.	4.0	44
25	The Design and Synthesis of Hard and Impermeable, Yet Flexible, Conformal Organic Coatings. Advanced Materials, 2012, 24, 3692-3696.	11.1	40
26	A critical review and commentary on recent progress of additive manufacturing and its impact on membrane technology. Journal of Membrane Science, 2022, 645, 120041.	4.1	38
27	Zwitterionic Ion-Selective Membranes with Tunable Subnanometer Pores and Excellent Fouling Resistance. Chemistry of Materials, 2021, 33, 4408-4416.	3.2	34
28	A Method for Manufacturing Membranes with Ultrathin Hydrogel Selective Layers for Protein Purification: Interfacially Initiated Free Radical Polymerization (IIFRP). Chemistry of Materials, 2018, 30, 1265-1276.	3.2	26
29	Printing zwitterionic self-assembled thin film composite membranes: Tuning thickness leads to remarkable permeability for nanofiltration. Journal of Membrane Science, 2021, 635, 119428.	4.1	26
30	Spontaneous Selfâ€Assembly and Micellization of Random Copolymers in Organic Solvents. Macromolecular Chemistry and Physics, 2017, 218, 1700226.	1.1	25
31	Responsive filtration membranes by polymer self-assembly. Technology, 2016, 04, 217-228.	1.4	24
32	Self-Assembled Polymer Nanostructures for Liquid Filtration Membranes: A Review. Nanoscience and Nanotechnology Letters, 2015, 7, 21-32.	0.4	23
33	Membranes with Thin Hydrogel Selective Layers Containing Viral-Templated Palladium Nanoparticles for the Catalytic Reduction of Cr(VI) to Cr(III). ACS Applied Nano Materials, 2019, 2, 5233-5244.	2.4	22
34	Membranes with Functionalized Nanopores for Aromaticity-Based Separation of Small Molecules. ACS Applied Materials & Interfaces, 2019, 11, 12854-12862.	4.0	20
35	Electrospun fiber membranes from blends of poly(vinylidene fluoride) with foulingâ€resistant zwitterionic copolymers. Polymer International, 2019, 68, 231-239.	1.6	20
36	Interaction-based ion selectivity exhibited by self-assembled, cross-linked zwitterionic copolymer membranes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	3.3	20

Ayse Asatekin

#	Article	IF	CITATIONS
37	Thermal properties and structure of electrospun blends of PVDF with a fluorinated copolymer. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 312-322.	2.4	16
38	Responsive Pore Size Properties of Composite NF Membranes Based on PVDF Graft Copolymers. Separation Science and Technology, 2009, 44, 3330-3345.	1.3	14
39	Fouling in hollow fiber membrane microfilters used for household water treatment. Journal of Water Sanitation and Hygiene for Development, 2015, 5, 220-228.	0.7	13
40	Nanoconfinement and Chemical Structure Effects on Permeation Selectivity of Self-Assembling Graft Copolymers. ACS Macro Letters, 2015, 4, 872-878.	2.3	13
41	High Flux Membranes with Ultrathin Zwitterionic Copolymer Selective Layers with â^1⁄41 nm Pores Using an Ionic Liquid Cosolvent. ACS Applied Polymer Materials, 2019, 1, 1954-1959.	2.0	12
42	Foulant Adsorption to Heterogeneous Surfaces with Zwitterionic Nanoscale Domains. ACS Applied Polymer Materials, 2020, 2, 4709-4718.	2.0	12
43	Synthesis and Self-Assembly of Fully Zwitterionic Triblock Copolymers. , 2020, 2, 261-265.		12
44	Co-Deposition of Stimuli-Responsive Microgels with Foulants During Ultrafiltration as a Fouling Removal Strategy. ACS Applied Materials & Interfaces, 2019, 11, 18711-18719.	4.0	11
45	Relaxation dynamics of blends of <scp>PVDF</scp> and zwitterionic copolymer by dielectric relaxation spectroscopy. Journal of Polymer Science, 2020, 58, 1311-1324.	2.0	11
46	lonic strength-responsive poly(sulfobetaine methacrylate) microgels for fouling removal during ultrafiltration. Reactive and Functional Polymers, 2020, 156, 104738.	2.0	10
47	Electrospraying Zwitterionic Copolymers as an Effective Biofouling Control for Accurate and Continuous Monitoring of Wastewater Dynamics in a Real-Time and Long-Term Manner. Environmental Science & Technology, 2022, 56, 8176-8186.	4.6	9
48	Fabrication of a Microscale Device for Detection of Nitroaromatic Compounds. Journal of Microelectromechanical Systems, 2013, 22, 54-61.	1.7	8
49	Fouling- and Chlorine-Resistant Nanofiltration Membranes Fabricated from Charged Zwitterionic Amphiphilic Copolymers. ACS Applied Polymer Materials, 2022, 4, 7998-8008.	2.0	8
50	Glass-Forming Ability of Polyzwitterions. Macromolecules, 2021, 54, 10126-10134.	2.2	5
51	Acceptability, effectiveness, and fouling of PointOne membrane filters distributed in South Sudan. Journal of Water Sanitation and Hygiene for Development, 2019, 9, 247-257.	0.7	4
52	Laboratory Efficacy of Locally Available Backwashing Methods at Removing Fouling in Hollow-Fiber Membrane Filters Used for Household Water Treatment. Membranes, 2021, 11, 375.	1.4	3
53	Fouling-Resistant Membranes with Tunable Pore Size Fabricated Using Cross-Linkable Copolymers with High Zwitterion Content. , 2022, 2, 100019.		3
54	Functional Nanotube Membranes for Hydrophobicity-Based Separations by Initiated Chemical Vapor Deposition (iCVD). ACS Symposium Series, 2011, , 39-50.	0.5	2

#	Article	IF	CITATIONS
55	Crystallization kinetics, polymorphism fine tuning, and rigid amorphous fraction of poly(vinylidene) Tj ETQq1 1 0.	784314 rg 0.5	gBT /Overloc
56	Ultraâ€Fast Click Modification of Selfâ€Assembled Zwitterionic Copolymer Membranes for Enhanced Ion Selectivity. Advanced Materials Interfaces, 2022, 9, .	1.9	1
57	Nano Fracture Chemical Sensor for Explosives Detection. , 2010, , .		0
58	Response to: Lindquist, E. D., Norman, W. R., & Soerens, T. (2015) A review of: Fouling in hollow fiber membrane microfilters used for household water treatment (2015) Murray, A., Goeb, M., Stewart, B., Hopper, C., Peck, J., Meub, C., Asatekin, A. & Lantagne, D. J. WASHDEV 5 (2), 220–228 doi:10.2166/washdev.2015.206. Journal of Water Sanitation and Hygiene for Development, 2015, 5, 232-234.	0.7	0