John Tsanaktsidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4647609/publications.pdf

Version: 2024-02-01

80 papers

1,982 citations

28 h-index 265206 42 g-index

87 all docs 87 docs citations

87 times ranked

1833 citing authors

#	Article	IF	Citations
1	3D printed nickel catalytic static mixers made by corrosive chemical treatment for use in continuous flow hydrogenation. Reaction Chemistry and Engineering, 2022, 7, 284-296.	3.7	6
2	3Dâ€Printed Structured Reactor with Integrated Singleâ€Atom Catalyst Film for Hydrogenation. ChemCatChem, 2022, 14, .	3.7	12
3	Durability Study of 3Dâ€Printed Catalytic Static Mixers for Hydrogenations in Chemical Manufacturing. Chemie-Ingenieur-Technik, 2022, 94, 1017-1023.	0.8	5
4	Anticoagulant Heparin Mimetics via RAFT Polymerization. Biomacromolecules, 2020, 21, 1009-1021.	5 . 4	16
5	Sulfonated RAFT Copolymers as Heparin Mimetics: Synthesis, Reactivity Ratios, and Anticoagulant Activity. Macromolecular Bioscience, 2020, 20, e2000110.	4.1	9
6	Enhancing Multicomponent Metal–Organic Frameworks for Low Pressure Liquid Organic Hydrogen Carrier Separations. Angewandte Chemie, 2020, 132, 6146-6154.	2.0	10
7	Enhancing Multicomponent Metal–Organic Frameworks for Low Pressure Liquid Organic Hydrogen Carrier Separations. Angewandte Chemie - International Edition, 2020, 59, 6090-6098.	13.8	50
8	Cyclooctatetraenes through Valence Isomerization of Cubanes: Scope and Limitations. Chemistry - A European Journal, 2019, 25, 2735-2739.	3.3	18
9	Cyclooctatetraene: A Bioactive Cubane Paradigm Complement. Chemistry - A European Journal, 2019, 25, 2729-2734.	3.3	24
10	The cubane paradigm in bioactive molecule discovery: further scope, limitations and the cyclooctatetraene complement. Organic and Biomolecular Chemistry, 2019, 17, 6790-6798.	2.8	49
11	CUB-5: A Contoured Aliphatic Pore Environment in a Cubic Framework with Potential for Benzene Separation Applications. Journal of the American Chemical Society, 2019, 141, 3828-3832.	13.7	87
12	Heparin mimetics with anticoagulant activity. Medicinal Research Reviews, 2018, 38, 1582-1613.	10.5	45
13	The role of polycyclic frameworks in modulating P2X7 receptor function. Tetrahedron, 2018, 74, 1207-1219.	1.9	7
14	Catalytic Static Mixers for the Continuous Flow Hydrogenation of a Key Intermediate of Linezolid (Zyvox). Organic Process Research and Development, 2018, 22, 1448-1452.	2.7	39
15	Poly(2-oxazoline)s with pendant cubane groups. Polymer Chemistry, 2018, 9, 4840-4847.	3.9	12
16	Preparation of Forced Gradient Copolymers Using Tubeâ€inâ€Tube Continuous Flow Reactors. Macromolecular Reaction Engineering, 2017, 11, 1600065.	1.5	15
17	Efficient synthesis of 5-(chloromethyl)furfural (CMF) from high fructose corn syrup (HFCS) using continuous flow processing. Reaction Chemistry and Engineering, 2017, 2, 541-549.	3.7	19
18	Synthesis of Imines and Amines from Furfurals Using Continuous Flow Processing. Australian Journal of Chemistry, 2017, 70, 1069.	0.9	1

#	Article	IF	CITATIONS
19	Continuous flow hydrogenations using novel catalytic static mixers inside a tubular reactor. Reaction Chemistry and Engineering, 2017, 2, 180-188.	3.7	81
20	4-Halogeno-3,5-dimethyl-1 <i>H</i> -pyrazole-1-carbodithioates: versatile reversible addition fragmentation chain transfer agents with broad applicability. Polymer International, 2017, 66, 1438-1447.	3.1	28
21	Cover Image, Volume 66, Issue 11. Polymer International, 2017, 66, i-i.	3.1	O
22	Use of Catalytic Static Mixers for Continuous Flow Gas–Liquid and Transfer Hydrogenations in Organic Synthesis. Organic Process Research and Development, 2017, 21, 1311-1319.	2.7	50
23	Diels–Alder reactions of myrcene using intensified continuous-flow reactors. Beilstein Journal of Organic Chemistry, 2017, 13, 120-126.	2.2	14
24	Validating Eaton's Hypothesis: Cubane as a Benzene Bioisostere. Angewandte Chemie, 2016, 128, 3644-3649.	2.0	34
25	Validating Eaton's Hypothesis: Cubane as a Benzene Bioisostere. Angewandte Chemie - International Edition, 2016, 55, 3580-3585.	13.8	126
26	Frontispiece: Validating Eaton's Hypothesis: Cubane as a Benzene Bioisostere. Angewandte Chemie - International Edition, 2016, 55, .	13.8	1
27	Frontispiz: Validating Eaton's Hypothesis: Cubane as a Benzene Bioisostere. Angewandte Chemie, 2016, 128, .	2.0	0
28	Dithiocarbamate RAFT agents with broad applicability – the 3,5-dimethyl-1H-pyrazole-1-carbodithioates. Polymer Chemistry, 2016, 7, 481-492.	3.9	48
29	Continuous flow photo-initiated RAFT polymerisation using a tubular photochemical reactor. European Polymer Journal, 2016, 80, 200-207.	5.4	36
30	STAUDINGER AND RUZICKA'S ALTERED PYRETHROLONE: THE CYCLOPENTADIENONE DIMERS DERIVED FROM PYRETHRIN I. Acta Horticulturae, 2015, , 181-190.	0.2	2
31	Amination of Aryl Halides and Esters Using Intensified Continuous Flow Processing. Molecules, 2015, 20, 17860-17871.	3.8	6
32	Rapid Microwave-Assisted Synthesis of N-Aryl 1,2,3,4-Tetrahydroisoquinolines. Australian Journal of Chemistry, 2015, 68, 1890.	0.9	1
33	Cubane: 50 Years Later. Chemical Reviews, 2015, 115, 6719-6745.	47.7	145
34	Structureâ€"activity relationship studies of SEN12333 analogues: Determination of the optimal requirements for binding affinities at α7 nAChRs through incorporation of known structural motifs. European Journal of Medicinal Chemistry, 2015, 95, 277-301.	5.5	12
35	Protecting keratin fiber with water soluble N-substituted maleimides in high temperature processes. Fibers and Polymers, 2014, 15, 2247-2252.	2.1	0
36	Structure–activity relationships of N-substituted 4-(trifluoromethoxy)benzamidines with affinity for GluN2B-containing NMDA receptors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 828-830.	2.2	17

#	Article	IF	CITATIONS
37	Investigations of amide bond variation and biaryl modification in analogues of α7 nAChR agonist SEN12333. European Journal of Medicinal Chemistry, 2014, 84, 200-205.	5.5	2
38	Pilot-Scale Production of Dimethyl 1,4-Cubanedicarboxylate. Organic Process Research and Development, 2013, 17, 1503-1509.	2.7	47
39	Chloroform as a Hydrogen Atom Donor in Barton Reductive Decarboxylation Reactions. Journal of Organic Chemistry, 2013, 78, 6677-6687.	3.2	39
40	The Synthesis of a Cubane-Substituted Dipeptide. Australian Journal of Chemistry, 2012, 65, 690.	0.9	11
41	The scope for synthesis of macro-RAFT agents by sequential insertion of single monomer units. Polymer Chemistry, 2012, 3, 1879.	3.9	122
42	Some Recent Developments in RAFT Polymerization. ACS Symposium Series, 2012, , 243-258.	0.5	9
43	RAFTâ€Derived Polymer–Drug Conjugates: Poly(hydroxypropyl methacrylamide) (HPMA)–7â€Ethylâ€10â€hydroxycamptothecin (SNâ€38) Conjugates. ChemMedChem, 2012, 7, 281-291.	3.2	28
44	Inside Cover: RAFT-Derived Polymer-Drug Conjugates: Poly(hydroxypropyl methacrylamide) (HPMA)-7-Ethyl-10-hydroxycamptothecin (SN-38) Conjugates (ChemMedChem 2/2012). ChemMedChem, 2012, 7, 178-178.	3.2	0
45	Reductive Radical Decarboxylation of Aliphatic Carboxylic Acids. Organic Syntheses, 2012, 89, 471.	1.0	6
46	Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing. Green Chemistry, 2011, 13, 1114.	9.0	110
47	Reducing the Cost, Smell, and Toxicity of the Barton Reductive Decarboxylation: Chloroform as the Hydrogen Atom Source. Organic Letters, 2011, 13, 1944-1947.	4.6	51
48	Flow synthesis of tricyclic spiropiperidines as building blocks for the histrionicotoxin family of alkaloids. Tetrahedron, 2010, 66, 6445-6449.	1.9	46
49	Thermochemical properties of iodinated cubane derivatives. Thermochimica Acta, 2010, 499, 15-20.	2.7	30
50	Size discrimination in intramolecular complexation of modified $\hat{l}\pm$ -cyclodextrins: $\hat{l}\pm$ -Cyclodextrin = cyclomaltohexaose. a preparative and nuclear magnetic resonance studyElectronic supplementary information (ESI) available: ROESY spectra of $4\hat{a}\in^2$, 5, $1\hat{a}\in^2$, 3 and 1. See http://www.rsc.org/suppdata/p1/b1/b107324a/. Journal of the Chemical Society, Perkin Transactions 1,	1.3	0
51	2001, , 3361-3364. Intramolecular complexation in modified β-cyclodextrins:†a preparative, nuclear magnetic resonance and pH titration study. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1251-1258.	1.3	9
52	Square pegs in round holes. Preparation and intramolecular complexation of cubyl substituted β-cyclodextrins †and of an adamantane analogue. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 463-469.	1.3	14
53	The cyclization of N-butylpent-4-enylaminyl revisited: a combined theoretical and experimental study â€. Perkin Transactions II RSC, 2000, , 425-431.	1.1	16
54	endo-2,4-Dibromo-3a,4,7,7a-tetrahydro-4,7-methanoindene-1,8-dione 8-Ethylene Acetal. Acta Crystallographica Section C: Crystal Structure Communications, 1998, 54, 151-152.	0.4	1

#	Article	IF	CITATIONS
55	Indirect Monobromination of the Cubane Nucleus. The Synthesis of Dimethyl 2-Bromocubane-1,4-dicarboxylate. Australian Journal of Chemistry, 1998, 51, 593.	0.9	3
56	Cubylcarbinyl Cation:Â Fact or Fiction?. Journal of Organic Chemistry, 1997, 62, 5709-5712.	3.2	6
57	endo-1,4,4-Tribromo-3-methyltricyclo[5.2.1.02,6]dec-8-ene-5,10-dione 10-Ethylene Acetal. Acta Crystallographica Section C: Crystal Structure Communications, 1997, 53, 1916-1917.	0.4	O
58	Dimethyl Cubane-1,4-dicarboxylate: A Practical Laboratory Scale Synthesis. Australian Journal of Chemistry, 1997, 50, 189.	0.9	29
59	Environmentally Benign Procedures for the Preparation and Isolation of 3-Methylcyclopent-2-en-1-one. Australian Journal of Chemistry, 1997, 50, 921.	0.9	36
60	Dimethyl (±)-2,3-Dimethylcubane-1,4-dicarboxylate. Australian Journal of Chemistry, 1997, 50, 1043.	0.9	3
61	Cyclization of N-Butyl-4-pentenylaminyl: Â Implications for the Cyclization of Alkenylaminyl Radicals. Journal of the American Chemical Society, 1996, 118, 4276-4283.	13.7	29
62	Molecular dynamics in substituted cubanes $\hat{a}\in$ a joint crystallographic and solid-state NMR study. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, C420-C420.	0.3	0
63	Dimethyl 2-Methylcubane-1,4-dicarboxylate and Dimethyl 2,3-Dimethylcubane-1,4-dicarboxylate. Acta Crystallographica Section C: Crystal Structure Communications, 1995, 51, 1658-1661.	0.4	0
64	Barton Decarboxylation of Cubane-1,4-dicarboxylic Acid: Optimized Procedures for Cubanecarboxylic Acid and Cubane. Synthesis, 1995, 1995, 501-502.	2.3	40
65	A New Approach to Alkylated Cubanes: the Synthesis of Dimethyl 2-Methylcubane-1,4-dicarboxylate. Australian Journal of Chemistry, 1994, 47, 1647.	0.9	3
66	Ab initio study of the homolytic additions of aminyl radicals and ammoniumyl cation radicals to alkenes. Journal of the Chemical Society Perkin Transactions II, 1994, , 2385.	0.9	4
67	Influence of bis(tributyltin) oxide on aminyl radical cyclizations. Journal of the Chemical Society Chemical Communications, 1994, , 533.	2.0	7
68	Selective Bromochlorination of endo-1,4-Dibromotricyclo[5.2.1.02,6]deca-3,8-diene-5,10-dione 10-Ethylene Acetal at the Conjugated Carbon-Carbon Double Bond. Australian Journal of Chemistry, 1994, 47, 963.	0.9	3
69	A Convenient, Regiospecific Synthesis of Dimethyl 4-Oxocyclopentane-1,3-dicarboxylate. Australian Journal of Chemistry, 1994, 47, 1811.	0.9	1
70	The Generation of Aminyl Radicals From Sulfenamides. Australian Journal of Chemistry, 1991, 44, 1809.	0.9	28
71	Direct radical substitution on the cubane skeleton. Tetrahedron Letters, 1990, 31, 805-806.	1.4	25
72	Unusual bridgehead reactivity: Formation of [1.1.1]Propellane by 1,3-dehydrobromination of 1-bromobicyclo[1.1.1]Pentane Tetrahedron Letters, 1990, 31, 5219-5220.	1.4	17

#	Article	IF	CITATIONS
73	The reactions of 1,4-dihalocubanes with organolithiums. The case for 1,4-cubadiyl. Journal of the American Chemical Society, 1990, 112, 876-878.	13.7	41
74	Synthesis of Bridgehead Halides by Barton Halodecarboxylation. Australian Journal of Chemistry, 1989, 42, 61.	0.9	29
75	Synthesis of iodocubanes by decarboxylative iodination. Tetrahedron Letters, 1989, 30, 6967-6968.	1.4	31
76	Synthesis of some bridgehead (trimethylsilyl)polycycloalkanes. Silicon-29 NMR chemical shifts and silicon-29-carbon-13 coupling constants. Organometallics, 1988, 7, 1178-1182.	2.3	12
77	A Convenient Synthesis of Trimethylsilyl Fluoride. Synthesis, 1988, 1988, 407-407.	2.3	5
78	Enhanced solvolytic reactivity of 1-bromobicyclo $[3.1.1]$ heptane: intermediacy of a stabilised bridgehead carbenium ion. Journal of the Chemical Society Chemical Communications, 1987, , 833.	2.0	12
79	Decarboxylation of Bridgehead Carboxylic Acids by the Barton Procedure. Australian Journal of Chemistry, 1986, 39, 2061.	0.9	30
80	Synthesis of Bridgehead-Bridgehead Substituted Bicycloalkanes. Australian Journal of Chemistry, 1985, 38, 1705.	0.9	20