Koji Takahashi

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/464722/publications.pdf
Version: 2024-02-01

Fracture Mechanical Estimation for the Maximum Defect Size Rendered Harmless by Peening for High
6 Tensile Steel Welded Joint Containing a Surface Defect at the Weld Toe. ZairyolJournal of the Society of Materials Science, Japan, 2021, 70, 465-472.

7 Evaluation of fatigue limit and harmless crack size of needle peened offshore structure steel F690.
7 Journal of Mechanical Science and Technology, 2021, 35, 3855-3862.

8 Effects of laser peening on the fatigue strength and defect tolerance of aluminum alloy. Fatigue and $8 \quad$ Fracture of Engineering Materials and Structures, 2020, 43, 845-856.

Effects of Small Surface Defect on Fatigue Limit of Spring Steel. Transactions of Japan Society of Effects of Small Surface Defect on Fati
Spring Engineers, 2020, 2020, 27-34.
0.2 012 Fatigue Limit Improvement and Rendering Defects Harmless by Needle Peening for High Tensile SteelWelded Joint. Metals, 2019, 9, 143.
Evaluation of Fracture Strength of Ceramics Containing Small Surface Defects Introduced by Focused
Ion Beam. Materials, 2018, 11, 457.
Increased fatigue strength of partially stabilised zirconia achieved by shot peening. Materials Science

and Technology, 2017,33, 623-628. \quad\begin{tabular}{l}
Improvement of torsional fatigue limit and rendering surface defect harmless by shot peening for

spring steel. Journal of Physics: Conference Series, 2017, 842, 012066.

\quad

Fatigue Limit Improvement by Needle-Peening for Stainless Steel Welded Joint Containing a Crack-Like

25

Defect. , 2016, ,
\end{tabular} 2016, , .

27 Engineering and Performance, 2015, 24, 3573-3578.
27 Increase in Strength of Partially Stabilized Zirconia After Shot Peening. Journal of Materials Engineering and Performance, 2015, 24, 3573-3578.
Fatigue Limit Prediction and Estimation for the Crack Size Rendered Harmless by Peening for Welded
Joint Containing a Surface Crack. Materials Sciences and Applications, 2015, 06, 500-510.
$0.4 \quad 6$

Effect of Material Hardness on Crack Size Rendered Harmless by Shot Peening. Zairyo/Journal of the
30 Society of Materials Science, Japan, 2015, 64, 859-864.
$0.2 \quad 1$
.
8

Low Cycle Fatigue Evaluation of Pipe Bends With Local Wall Thinning Considering Multi-Axial Stress
State. Journal of Pressure Vessel Technology, Transactions of the ASME, 2015, 137, .

Fatigue Limit Prediction and Estimation for the Crack Size Rendered Harmless by Peening for Welded
Joint Containing a Surface Crack. Materials Sciences and Applications, 2015, 06, 500-510.
0.
37

Effect of peening on the fatigue limit of welded structural steel with surface crack, and rendering
the crack harmless. International Journal of Structural Integrity, 2014, 5, 279-289.

Improvement of fatigue limit by shot peening for highâ€tensile strength steel containing a crack in the
38 stress concentration zone. International Journal of Structural Integrity, 2013, 4, 258-266.
3.3

15

Effect of Local Wall Thinning on Low-Cycle Fatigue Behaviors of Elbow With Internal Pressure: Estimation of Fatigue Life Based on Revised Universal Slope Method. , 2013, , .

Improvement of Fatigue Limit and Rendering Crack Harmless by Peening for Rolled Steel Containing a
$40 \quad$ Crack at the Weld Toe Zone. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of
Mechanical Engineers, Part A, 2013, 79, 110-114.
Modeling of Overload Effect on Fatigue Crack Growth Threshold Using Finite Element Method. Nihon
41 Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2013,
$0.2 \quad 0$
79, 716-720.

Improvement in Fatigue Limit by Shot Peening for High-Strength Steel Containing Crack-Like Surface
Defect: Influence of Surface Crack Aspect Ratio. , 2013, , .

43 Improvement of fatigue limit by overload for high-tensile strength steel containing a crack in the
stress concentration zone. International Journal of Structural Integrity, 2013, 4, 368-382.
3.38

Low Cycle Fatigue Behavior and Seismic Assessment for Pipe Bend Having Local Wall
44 Thinning-Influence of Internal Pressure. Journal of Pressure Vessel Technology, Transactions of the ASME, 2013, 135, .

45	Theoretical Study on Low Cycle Fatigue Strength of Elbows with Local Wall Thinning. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2013, 79, 1303-1316.	0.2	2
46	Improvement of Critical Stress for Crack-Healing of $\mathrm{Si}\langle$ sub> $3</$ sub $>\mathrm{N}<$ sub $>4</$ sub>/SiC by Shot Peening. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2013, 79, 697-701.	0.2	0
47	Improvement of Rolling Contact Fatigue Strength of Silicon Nitride by Shot-Peening. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2013, 79, 740-744.	0.2	2

48 Improvement in Contact Strength of $\mathrm{Si} 3 \mathrm{~N} 4 / \mathrm{SiC}$ Composite by Crack Healing. Journal of Powder Technology, 2013, 2013, 1-6.
0.4

Improvement of the Contact Strength of $\mathrm{A} \mid<$ sub $\rangle\langle\mathrm{b}\rangle 2\langle\mid \mathrm{b}\rangle\langle |$ sub $\rangle \mathrm{O}\langle$ sub $\rangle\langle\mathrm{b}\rangle 3\langle\mid \mathrm{b}\rangle\langle |$ sub $\rangle \mid \mathrm{SiC}$ by a
Combination of Shot Peening and Crack-Healing. Journal of Powder Technology, 2013, 2013, 1-5.

New Technology for Increasing Through-Life Reliability of Ceramics Components Using Self-Crack-Healing Ability. Journal of Powder Technology, 2013, 2013, 1-11.
0.4

GS21 Preventing crack initiation and propagation by shot-peening in Partially Stabilized Zirconia. The
Proceedings of the Materials and Mechanics Conference, 2013, 2013, _GS21-1_-_GS21-3_.

Low Cycle Fatigue Behavior and Seismic Assessment for Elbow Pipe Having Local Wall Thinning.
Journal of Pressure Vessel Technology, Transactions of the ASME, 2012, 134, .
0.6

15

53 Estimation of Remaining Fatigue Life for Elbow Pipe Subjected to Cyclic Overload. , 2012, , .
56 Estimation of Low-Cycle Fatigue Life of Elbow Pipes Considering the Multi-Axial Stress Effect. , 2012, , .

61 Improvement of Contact Strength of Si3N4/SiC by Combination of Shot Peening and Self-Crack Healing. , 2011, , .
Crack-Healing Behaviour of Zirconia /SiC Composite Ceramics and Strength Properties of
Crack-Healing Specimens. Zairyo/Journal of the Society of Materials Science, Japan, 2011, 60, 742-747.
63 Influences of Cyclic Pre-Overload on Low Cycle Fatigue Behaviours of Elbow Pipe. , 2011, , .
Low Cycle Fatigue Behaviors of Elbow With Local Wall Thinning Under Combined Bending and Internal Pressure. , 2011, , .0
65 Improvement of fatigue limit by shot peening for highâ€strength steel containing a crackâ€like surface defect. International Journal of Structural Integrity, 2011, 2, 281-292.
3.331
Prevention of SCC Properties by Overloading Effect in Stainless Steel. Nihon Kikai Gakkai Ronbunshu, A
Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2011, 77, 218-222. 0.2 0
66Influences of Overload on Low Cycle Fatigue Behaviors of Elbow Pipe with Local Wall Thinning.
67 Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part0.20
A, 2011, 77, 698-702.Investigation of the Seismic Safety Capacity of Aged Piping System: Shake Table Test on Piping Systems7
68 With Wall Thinning by E-Defense., 2011, ,.3.33
Overloading effect on the fatigue threshold stress intensity factor range ($\mathrm{l}^{\prime \prime} \mathrm{Kth}$) as a function of crack length in SUS316. International Journal of Structural Integrity, 2010, 1, 43-51. 69Crackâ€healing behaviour of $\mathrm{ZrO}<$ sub $>2<\mid$ sub $>/ \mathrm{SiC}$ composite ceramics. International Journal ofStructural Integrity, 2010, 1, 73-84.
Detection of the Crack Initiation by Means of AE Method Under Low Cycle Fatigue of Elbow Pipe Having
Local Wall Thinning. , 2010, , .
Local Wall Thinning. , 2010, , .0

Size. , 2010, , .

$$
\begin{aligned}
& 73 \text { Tri-Axial Shake Table Test on the Thinned Wall Piping Model and Damage Detection Before Failure. , } \\
& 2010, \text {, }
\end{aligned}
$$

```
75 Influences of Inner Pressure and Overload on Low Cycle Fatigue Behaviors of Elbow Pipes With Local
Improvement of strength and reliability of ceramics by shot peening and crack healing. Journal of the
European Ceramic Society, 2010, 30, 3047-3052.

Experimental study of low-cycle fatigue of pipe elbows with local wall thinning and life estimation using finite element analysis. International Journal of Pressure Vessels and Piping, 2010, 87, 211-219.

Low Cycle Fatigue Behavior and Seismic Assessment for Elbow Pipe Having Local Wall Thinning. , 2010, ,

Improvement of the Threshold Stress Intensity Factor for Stress Corrosion Cracking in SUS316 by

\section*{Threshold Stress for Crack Healing of Mullite Reinforced by SiC Whiskers and SiC Particles and}

107 Resultant Fatigue Strength at the Healing Temperature. Journal of the American Ceramic Society, 2007,
\begin{tabular}{|c|c|c|c|}
\hline 109 & Failure behavior of carbon steel pipe with local wall thinning near orifice. Nuclear Engineering and Design, 2007, 237, 335-341. & 1.7 & 31 \\
\hline 110 & Strength Recovery of Heavily Machined Si\&lt;SUB\&gt;3\&lt;/SUB\&gt;N\&lt;SUB\&gt;4\&lt;/SUB\&gt;/SiC Composite Ceramic by Crack-Healing. Transactions of Japan Society of Spring Engineers, 2007, 2007, 21-25. & 0.2 & 2 \\
\hline 111 & Effects of Frequency on the Crack-Healing Behavior of Si3N4/SiC Composite under Cyclic Stress. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2006, 49, 307-313. & 0.4 & 3 \\
\hline 112 & Self-Crack-Healing Behavior of Mullite/SiC Particle/SiC Whisker Multi-Composites and Potential Use for Ceramic Springs. Journal of the American Ceramic Society, 2006, 89, 1352-1357. & 3.8 & 54 \\
\hline 113 & Comparison of experimental and finite element analytical results for the strength and the deformation of pipes with local wall thinning subjected to bending moment. Nuclear Engineering and Design, 2006, 236, 140-155. & 1.7 & 17 \\
\hline 114 & Failure Behavior of Carbon Steel Pipe Having Local Wall Thinning Near Tee Joint. , 2006, , 781. & & 0 \\
\hline 115 & Crack-Healing under Cyclic Stress and Improvement of the Resultant Fatigue Strength of Si\&lt;sub\&gt;3\&lt;|sub\&gt;N\&lt;sub\&gt;4\&|t;/sub\&gt;/SiC. Key Engineering Materials, 2006, 317-318, 453-456. & 0.4 & 1 \\
\hline 116 & Critical Conditions for Crack-Healing of Structural Ceramics under Constant or Cyclic Stress. Key Engineering Materials, 2006, 317-318, 461-464. & 0.4 & 0 \\
\hline 117 & A new methodology to guarantee the structural integrity of ceramics components. Journal of Advanced Science, 2006, 18, 10-15. & 0.1 & 0 \\
\hline
\end{tabular}
118 Strength Recovery of Machined Alumina by Self Crack Healing. , 2006, , 1051-1052.
119 (Crack-Healing + Proof-Test): Methodology to Guarantee the Reliability of Ceramics. , 2006, , 1065-1066.
Critical crack-healing condition for SiC whisker reinforced alumina under stress. Journal of the
European Ceramic Society, 2005, 25, 3649-3655.
Crack-Healing Behavior of Mullite/SiC Particle/SiC Whisker Multi-Composite and Mechanical
```

131 Allowable Limit and Finite Element Analysis of Pipes With Local Wall Thinning Subjected to Bending
Moment. , 2004, , }387

```135 High-Temperature Fatigue Strength of Crack-Healed Al2O3 Toughened by SiC Whiskers. Journal of the
```American Ceramic Society, 2004, 87, 1259-1264.

Development of structural ceramics having large crack-healing ability and fracture toughness. , 2004, 5648, 276.
137 High-temperature fatigue strength of crack-healed Al2O3 toughened by SiC whiskers. , 2004, , 0
Crack-Healing Behavior, High Temperature Strength and Fracture Toughness of Alumina Reinforced by0.2

Self-crack-healing behavior under cyclic stress of silicon nitride composite at elevated temperature.,
145 Mechanical Properties of SiC reinforced alumina composites attached crack-healing ability. TheMechanical Engineers, Part A, 2002, 68, 1063-1070.
\(\left.\begin{array}{lll}\text { Effect of loading sequence on fatigue damage under push-pull followed by torsion and torsion } \\ \text { followed by push-pull. , 1999, } 403-411 .\end{array}\right] .0\)
Measurement of Sliding Wear of Shot-Peened Partially Stabilized Zirconia Plate. Applied Mechanics and Materials, 0, 597, 353-357.
0.23

Self-Crack-Healing Ability of Alumina/SiC Nanocomposite Fabricated by Self-Propagating High-Temperature Synthesis. , 0, , 443-448.

Healing Behavior of Machining Cracks in Oxide-Based Composite Containing SiC Particles. Ceramic Engineering and Science Proceedings, 0, , 45-55.

Potential Use of Mullite-SiC Whiskers-SiC Particles Multi-Composite as High Temperature Springs. , 0, , 381-387.

Improvement in Working Limit for Ceramic Components by Using Crack-Heal. Ceramic Engineering and Science Proceedings, 0, , 93-99.

0```

