Zhifang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4647174/publications.pdf

Version: 2024-02-01

33	779	14	27
papers	citations	h-index	g-index
34	34	34	653
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Carbohydrate-Monophosphoryl Lipid A Conjugates Are Fully Synthetic Self-Adjuvanting Cancer Vaccines Eliciting Robust Immune Responses in the Mouse. ACS Chemical Biology, 2012, 7, 235-240.	3.4	98
2	Hyaluronan decoration of milk exosomes directs tumor-specific delivery of doxorubicin. Carbohydrate Research, 2020, 493, 108032.	2.3	76
3	A fully synthetic self-adjuvanting globo H-Based vaccine elicited strong T cell-mediated antitumor immunity. Chemical Science, 2015, 6, 7112-7121.	7.4	69
4	Synthesis and evaluation of monophosphoryl lipid A derivatives as fully synthetic self-adjuvanting glycoconjugate cancer vaccine carriers. Organic and Biomolecular Chemistry, 2014, 12, 3238-3245.	2.8	66
5	Fully Synthetic Self-Adjuvanting α-2,9-Oligosialic Acid Based Conjugate Vaccines against Group C Meningitis. ACS Central Science, 2016, 2, 210-218.	11.3	65
6	Synthesis and Immunological Studies of Linear Oligosaccharides of \hat{l}^2 -Glucan As Antigens for Antifungal Vaccine Development. Bioconjugate Chemistry, 2015, 26, 466-476.	3.6	49
7	Synthesis and immunological study of \hat{l} ±-2,9-oligosialic acid conjugates as anti-group C meningitis vaccines. Chemical Communications, 2015, 51, 9647-9650.	4.1	41
8	Recent progress of fully synthetic carbohydrate-based vaccine using TLR agonist as build-in adjuvant. Chinese Chemical Letters, 2018, 29, 19-26.	9.0	34
9	Synthesis and Evaluation of GM2-Monophosphoryl Lipid A Conjugate as a Fully Synthetic Self-Adjuvant Cancer Vaccine. Scientific Reports, 2017, 7, 11403.	3.3	29
10	6- <i>O</i> -Branched Oligo-Î ² -glucan-Based Antifungal Glycoconjugate Vaccines. ACS Infectious Diseases, 2016, 2, 123-131.	3.8	27
11	Site-specific C-terminal dinitrophenylation to reconstitute the antibody Fc functions for nanobodies. Chemical Science, 2019, 10, 9331-9338.	7.4	25
12	Universal endogenous antibody recruiting nanobodies capable of triggering immune effectors for targeted cancer immunotherapy. Chemical Science, 2021, 12, 4623-4630.	7.4	18
13	A Convergent Synthesis of 6â€ <i>O</i> â€Branched βâ€Glucan Oligosaccharides. European Journal of Organic Chemistry, 2015, 2015, 2942-2951.	2.4	17
14	Rhamnose modified bovine serum albumin as a carrier protein promotes the immune response against sTn antigen. Chemical Communications, 2020, 56, 13959-13962.	4.1	16
15	Enzymatic On-Resin Peptide Cleavage and in Situ Cyclization One-Pot Strategy for the Synthesis of Cyclopeptide and Cyclotide. Journal of Organic Chemistry, 2018, 83, 14078-14083.	3.2	12
16	Synthesis of a dimer of the repeating unit of type Ia group B <i>Streptococcus</i> extracellular capsular polysaccharide and immunological evaluations of related protein conjugates. Organic Chemistry Frontiers, 2019, 6, 2833-2838.	4.5	12
17	Synthesis and immunological study of a wall teichoic acid-based vaccine against <i>E. faecium</i> U0317. Journal of Carbohydrate Chemistry, 2017, 36, 205-219.	1.1	11
18	One-step immobilization and purification of genetic engineering CBD fusion EndoS on cellulose for antibodies Fc-glycan remodeling. Bioorganic Chemistry, 2019, 91, 103114.	4.1	11

#	Article	IF	CITATIONS
19	MUC1 vaccines using \hat{l}^2 -cyclodextrin grafted chitosan (CS-g-CD) as carrier via host-guest interaction elicit robust immune responses. Chinese Chemical Letters, 2022, 33, 4882-4885.	9.0	11
20	New potent and selective $\hat{l}\pm\nu\hat{l}^23$ integrin ligands: Macrocyclic peptides containing RGD motif synthesized by sortase A-mediated ligation. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1911-1913.	2.2	10
21	Sortase A-mediated on-resin peptide cleavage and in situ ligation: an efficient one-pot strategy for the synthesis of functional peptides and proteins. Organic Chemistry Frontiers, 2017, 4, 2058-2062.	4.5	10
22	Dinitrophenol-mediated modulation of an anti-PD-L1 VHH for Fc-dependent effector functions and prolonged serum half-life. European Journal of Pharmaceutical Sciences, 2021, 165, 105941.	4.0	9
23	Quantifying the Efficiency of N-Phenyl-D-mannosamine to Metabolically Engineer Sialic Acid on Cancer Cell Surface. Journal of Carbohydrate Chemistry, 2014, 33, 395-407.	1.1	8
24	Exendin 4-Hapten Conjugate Capable of Binding with Endogenous Antibodies for Peptide Half-life Extension and Exerting Long-Acting Hypoglycemic Activity. Journal of Medicinal Chemistry, 2021, 64, 4947-4959.	6.4	8
25	Chemical Synthesis of Antibody–Hapten Conjugates Capable of Recruiting the Endogenous Antibody to Magnify the Fc Effector Immunity of Antibody for Cancer Immunotherapy. Journal of Medicinal Chemistry, 2022, 65, 323-332.	6.4	8
26	Site-selective modification of exendin 4 with variable molecular weight dextrans by oxime-ligation chemistry for improving type 2 diabetic treatment. Carbohydrate Polymers, 2020, 249, 116864.	10.2	7
27	Synthesis of DNP-modified GM3-based anticancer vaccine and evaluation of its immunological activities for cancer immunotherapy. Chinese Chemical Letters, 2021, 32, 4041-4044.	9.0	7
28	Dinitrophenolâ€Hyaluronan Conjugates as Multivalent Antibodyâ€Recruiting Glycopolymers for Targeted Cancer Immunotherapy. ChemMedChem, 2021, 16, 2960-2968.	3.2	7
29	Nanobody-Based Bispecific Neutralizer for Shiga Toxin-Producing <i>E.Âcoli</i> . ACS Infectious Diseases, 2022, 8, 321-329.	3.8	6
30	\hat{l}^2 -Galactosidase-dependent metabolic glycoengineering of tumor cells for imaging and immunotherapy. Chemical Communications, 2022, 58, 2568-2571.	4.1	5
31	Design and synthesis of rhamnose-modified exenatide conjugate by sortase A-mediated ligation. Journal of Carbohydrate Chemistry, 2019, 38, 167-178.	1.1	4
32	Chemo-enzymatic synthesis of the ALG1-CDG biomarker and evaluation of its immunogenicity. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127614.	2.2	2
33	GM3 trisaccharide biosynthesis and process optimization using engineered <i>E. coli</i> lysate and whole-cell catalysis. Journal of Carbohydrate Chemistry, 2020, 39, 217-231.	1.1	1