Hans Häcker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/464716/publications.pdf Version: 2024-02-01

HANS HÃORED

#	Article	IF	CITATIONS
1	A phospho-tyrosine–based signaling module using SPOP, CSK, and LYN controls TLR-induced IRF activity. Science Advances, 2022, 8, .	10.3	9
2	A rapid and affordable point of care test for antibodies against SARS-CoV-2 based on hemagglutination and artificial intelligence interpretation. Scientific Reports, 2021, 11, 24507.	3.3	7
3	Wiskott-Aldrich syndrome protein restricts cGAS/STING activation by dsDNA immune complexes. JCI Insight, 2020, 5, .	5.0	9
4	Fast and efficient genetic engineering of hematopoietic precursor cells for the study of dendritic cell migration. European Journal of Immunology, 2018, 48, 1074-1077.	2.9	24
5	Identification of Toll-like receptor signaling inhibitors based on selective activation of hierarchically acting signaling proteins. Science Signaling, 2018, 11, .	3.6	17
6	Triaryl Pyrazole Tollâ€Like Receptor Signaling Inhibitors: Structure–Activity Relationships Governing Pan―and Selective Signaling Inhibitors. ChemMedChem, 2018, 13, 2208-2216.	3.2	6
7	Genetic modification of ER-Hoxb8 osteoclast precursors using CRISPR/Cas9 as a novel way to allow studies on osteoclast biology. Journal of Leukocyte Biology, 2017, 101, 957-966.	3.3	14
8	Vitamin A differentially regulates cytokine expression in respiratory epithelial and macrophage cell lines. Cytokine, 2017, 91, 1-5.	3.2	21
9	Isoform-Specific Expression and Feedback Regulation of E Protein TCF4 Control Dendritic Cell Lineage Specification. Immunity, 2017, 46, 65-77.	14.3	84
10	MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway. Oncotarget, 2017, 8, 112980-112991.	1.8	21
11	G45R mutation in the nonstructural protein 1 of A/Puerto Rico/8/1934 (H1N1) enhances viral replication independent of dsRNA-binding activity and type I interferon biology. Virology Journal, 2016, 13, 127.	3.4	4
12	<scp>SHARPIN</scp> controls the development of regulatory T cells. Immunology, 2016, 148, 216-226.	4.4	20
13	Keratinocytes contribute intrinsically to psoriasis upon loss of <i>Tnip1</i> function. Proceedings of the United States of America, 2016, 113, E6162-E6171.	7.1	62
14	Protein Tyrosine Phosphatase PTPRS Is an Inhibitory Receptor on Human and Murine Plasmacytoid Dendritic Cells. Immunity, 2015, 43, 277-288.	14.3	47
15	Myeloid-Related Protein 14 Promotes Inflammation and Injury in Meningitis. Journal of Infectious Diseases, 2015, 212, 247-257.	4.0	30
16	Leukocyte Attraction by CCL20 and Its Receptor CCR6 in Humans and Mice with Pneumococcal Meningitis. PLoS ONE, 2014, 9, e93057.	2.5	26
17	Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage. Nature Medicine, 2014, 20, 648-654.	30.7	241
18	Quantitative Proteomic Analysis of the Influenza A Virus Nonstructural Proteins NS1 and NS2 during Natural Cell Infection Identifies PACT as an NS1 Target Protein and Antiviral Host Factor. Journal of Virology, 2014, 88, 9038-9048.	3.4	50

Hans HÃ**ʊ**ker

#	Article	IF	CITATIONS
19	Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nature Methods, 2013, 10, 795-803.	19.0	112
20	High mobility group box 1 prolongs inflammation and worsens disease in pneumococcal meningitis. Brain, 2013, 136, 1746-1759.	7.6	34
21	Type I Interferon Protects against Pneumococcal Invasive Disease by Inhibiting Bacterial Transmigration across the Lung. PLoS Pathogens, 2013, 9, e1003727.	4.7	78
22	NIK Prevents the Development of Hypereosinophilic Syndrome-like Disease in Mice Independent of IKKα Activation. Journal of Immunology, 2012, 188, 4602-4610.	0.8	26
23	Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nature Reviews Immunology, 2011, 11, 457-468.	22.7	392
24	The E3 Ubiquitin Ligase Mind Bomb-2 (MIB2) Protein Controls B-cell CLL/Lymphoma 10 (BCL10)-dependent NF-κB Activation. Journal of Biological Chemistry, 2011, 286, 37147-37157.	3.4	45
25	A20-binding inhibitor of NF-κB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein β activation and protects from inflammatory disease. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E998-1006.	7.1	88
26	CXCL16 Contributes to Neutrophil Recruitment to Cerebrospinal Fluid in Pneumococcal Meningitis. Journal of Infectious Diseases, 2010, 202, 1389-1396.	4.0	27
27	Inhibition of T Cells Provides Protection against Early Invasive Pneumococcal Disease. Infection and Immunity, 2010, 78, 5287-5294.	2.2	34
28	The p53-Target Gene Puma Drives Neutrophil-Mediated Protection against Lethal Bacterial Sepsis. PLoS Pathogens, 2010, 6, e1001240.	4.7	23
29	Apoptosis Is Essential for Neutrophil Functional Shutdown and Determines Tissue Damage in Experimental Pneumococcal Meningitis. PLoS Pathogens, 2009, 5, e1000461.	4.7	161
30	Phagocytosisâ€induced apoptosis of macrophages is linked to uptake, killing and degradation of bacteria. European Journal of Immunology, 2008, 38, 204-215.	2.9	41
31	Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20197-20202.	7.1	57
32	Regulation of MyD88-Dependent Signaling Events by S Nitrosylation Retards Toll-Like Receptor Signal Transduction and Initiation of Acute-Phase Immune Responses. Molecular and Cellular Biology, 2008, 28, 1338-1347.	2.3	62
33	Cutting Edge: A Transcriptional Repressor and Corepressor Induced by the STAT3-Regulated Anti-Inflammatory Signaling Pathway. Journal of Immunology, 2007, 179, 7215-7219.	0.8	149
34	Regulation and Function of IKK and IKK-Related Kinases. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, re13-re13.	3.9	1,026
35	Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8. Nature Methods, 2006, 3, 287-293.	19.0	337
36	Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature, 2006, 439, 204-207.	27.8	836

Hans HÃ**ë**ker

#	Article	IF	CITATIONS
37	Phagocytosis-Induced Apoptosis in Macrophages Is Mediated by Up-Regulation and Activation of the Bcl-2 Homology Domain 3-Only Protein Bim. Journal of Immunology, 2005, 174, 671-679.	0.8	52
38	Cutting Edge: Activation of Toll-Like Receptor 2 Induces a Th2 Immune Response and Promotes Experimental Asthma. Journal of Immunology, 2004, 172, 2739-2743.	0.8	426
39	Mechanism of processing of the NF-κB2 p100 precursor: identification of the specific polyubiquitin chain-anchoring lysine residue and analysis of the role of NEDD8-modification on the SCFI2-TrCP ubiquitin ligase. Oncogene, 2004, 23, 2540-2547.	5.9	102
40	IL-4 regulates IL-12 p40 expression post-transcriptionally as well as via a promoter-based mechanism. European Journal of Immunology, 2003, 33, 428-433.	2.9	7
41	Caspase-9/-3 Activation and Apoptosis Are Induced in Mouse Macrophages upon Ingestion and Digestion of <i>Escherichia coli</i> Bacteria. Journal of Immunology, 2002, 169, 3172-3179.	0.8	52
42	Is NF-κB2/p100 a direct activator of programmed cell death?. Cancer Cell, 2002, 2, 431-433.	16.8	39
43	Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. European Journal of Immunology, 2002, 32, 1958.	2.9	676
44	Activation of the immune system by bacterial CpGâ€ÐNA. Immunology, 2002, 105, 245-251.	4.4	136
45	Endocytosed HSP60s Use Toll-like Receptor 2 (TLR2) and TLR4 to Activate the Toll/Interleukin-1 Receptor Signaling Pathway in Innate Immune Cells. Journal of Biological Chemistry, 2001, 276, 31332-31339.	3.4	728
46	The role of immunostimulatory CpG-DNA in septic shock. Seminars in Immunopathology, 2000, 22, 167-171.	4.0	11
47	Immunostimulatory DNA sequences help to eradicate intracellular pathogens. Seminars in Immunopathology, 2000, 22, 147-152.	4.0	5
48	Immune Cell Activation by Bacterial Cpg-DNA through Myeloid Differentiation Marker 88 and Tumor Necrosis Factor Receptor–Associated Factor (Traf)6. Journal of Experimental Medicine, 2000, 192, 595-600.	8.5	434
49	CpG-DNA Activates In Vivo T Cell Epitope Presenting Dendritic Cells to Trigger Protective Antiviral Cytotoxic T Cell Responses. Journal of Immunology, 2000, 164, 2372-2378.	0.8	123
50	Paroxysmal Nocturnal Haemoglobinuria: A Replacement of Haematopoietic Tissue?. Acta Haematologica, 2000, 103, 41-48.	1.4	29
51	CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO Journal, 1998, 17, 6230-6240.	7.8	590
52	Bacterial DNA causes septic shock. Nature, 1997, 386, 336-337.	27.8	408
53	Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factorâ€Î±â€mediated shock. European Journal of Immunology, 1997, 27, 1671-1679.	2.9	402

54 Signal Transduction Pathways Activated By CpG-DNA. , 0, , 017-038.

1