## **Stephen Hamilton**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4647018/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Flood Plains of Large Rivers. , 2022, , 290-300.                                                                                                                                             |      | 1         |
| 2  | Water quality ramifications of temporary drawdown of Oregon reservoirs to facilitate juvenile<br>Chinook salmon passage. Lake and Reservoir Management, 2022, 38, 165-179.                   | 1.3  | 3         |
| 3  | Reducing adverse impacts of Amazon hydropower expansion. Science, 2022, 375, 753-760.                                                                                                        | 12.6 | 60        |
| 4  | An evaluation of carbon indicators of soil health in long-term agricultural experiments. Soil Biology and Biochemistry, 2022, 172, 108708.                                                   | 8.8  | 63        |
| 5  | How much inundation occurs in the Amazon River basin?. Remote Sensing of Environment, 2022, 278, 113099.                                                                                     | 11.0 | 18        |
| 6  | Landâ€based climate solutions for the United States. Global Change Biology, 2022, 28, 4912-4919.                                                                                             | 9.5  | 12        |
| 7  | Selecting soil hydraulic properties as indicators of soil health: Measurement response to management and site characteristics. Soil Science Society of America Journal, 2022, 86, 1206-1226. | 2.2  | 18        |
| 8  | Alternative Biogeochemical States of River Pools Mediated by Hippo Use and Flow Variability.<br>Ecosystems, 2021, 24, 284-300.                                                               | 3.4  | 16        |
| 9  | Hydropeaking by Small Hydropower Facilities Affects Flow Regimes on Tributaries to the Pantanal<br>Wetland of Brazil. Frontiers in Environmental Science, 2021, 9, .                         | 3.3  | 7         |
| 10 | Longâ€ŧerm increases in shell thickness in <i>Elliptio complanata</i> (Bivalvia: Unionidae) in the<br>freshwater tidal Hudson River. Freshwater Biology, 2021, 66, 1375-1381.                | 2.4  | 3         |
| 11 | Cascading effects: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 2021, 12, e03430.                                                                                | 2.2  | 8         |
| 12 | Root water uptake of biofuel crops revealed by coupled electrical resistivity and soil water content<br>measurements. Vadose Zone Journal, 2021, 20, e20124.                                 | 2.2  | 2         |
| 13 | Albedo-induced global warming impact of Conservation Reserve Program grasslands converted to annual and perennial bioenergy crops. Environmental Research Letters, 2021, 16, 084059.         | 5.2  | 8         |
| 14 | Water quality impacts of small hydroelectric power plants in a tributary to the Pantanal floodplain,<br>Brazil. River Research and Applications, 2021, 37, 448-461.                          | 1.7  | 8         |
| 15 | Phosphorus availability and leaching losses in annual and perennial cropping systems in an upper US<br>Midwest landscape. Scientific Reports, 2021, 11, 20367.                               | 3.3  | 13        |
| 16 | Animal legacies lost and found in river ecosystems. Environmental Research Letters, 2021, 16, 115011.                                                                                        | 5.2  | 7         |
| 17 | Climate change may impair electricity generation and economic viability of future Amazon hydropower. Global Environmental Change, 2021, 71, 102383.                                          | 7.8  | 18        |
| 18 | The meta-gut: community coalescence of animal gut and environmental microbiomes. Scientific Reports, 2021, 11, 23117.                                                                        | 3.3  | 17        |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Modeling the effects of vegetation on stream temperature dynamics in a large, mixed land cover watershed in the Great Lakes region. Journal of Hydrology, 2020, 581, 124283.                                                                | 5.4  | 6         |
| 20 | Longâ€ŧerm evapotranspiration rates for rainfed corn versus perennial bioenergy crops in a mesic<br>landscape. Hydrological Processes, 2020, 34, 810-822.                                                                                   | 2.6  | 13        |
| 21 | Further Development of Small Hydropower Facilities Will Significantly Reduce Sediment Transport to the Pantanal Wetland of Brazil. Frontiers in Environmental Science, 2020, 8, .                                                           | 3.3  | 14        |
| 22 | Hydropeaking Operations of Two Run-of-River Mega-Dams Alter Downstream Hydrology of the Largest<br>Amazon Tributary. Frontiers in Environmental Science, 2020, 8, .                                                                         | 3.3  | 31        |
| 23 | Measuring Floodplain Inundation Using Diel Amplitude of Temperature. Sensors, 2020, 20, 6189.                                                                                                                                               | 3.8  | 1         |
| 24 | Comparative analysis of water budgets across the U.S. long-term agroecosystem research network.<br>Journal of Hydrology, 2020, 588, 125021.                                                                                                 | 5.4  | 24        |
| 25 | Parasite and pathogen effects on ecosystem processes: A quantitative review. Ecosphere, 2020, 11, e03057.                                                                                                                                   | 2.2  | 22        |
| 26 | Predicted impacts of proposed hydroelectric facilities on fish migration routes upstream from the<br>Pantanal wetland (Brazil). River Research and Applications, 2020, 36, 452-464.                                                         | 1.7  | 21        |
| 27 | Longâ€ŧerm variability and density dependence in Hudson River <i>Dreissena</i> populations. Freshwater<br>Biology, 2020, 65, 474-489.                                                                                                       | 2.4  | 23        |
| 28 | Empirical Evidence for the Potential Climate Benefits of Decarbonizing Light Vehicle Transport in the<br>U.S. with Bioenergy from Purpose-Grown Biomass with and without BECCS. Environmental Science<br>& Technology, 2020, 54, 2961-2974. | 10.0 | 48        |
| 29 | Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US<br>Midwest. Science of the Total Environment, 2020, 734, 139379.                                                                           | 8.0  | 40        |
| 30 | Further Development of Small Hydropower Facilities May Alter Nutrient Transport to the Pantanal<br>Wetland of Brazil. Frontiers in Environmental Science, 2020, 8, .                                                                        | 3.3  | 5         |
| 31 | Widespread diminishing anthropogenic effects on calcium in freshwaters. Scientific Reports, 2019, 9, 10450.                                                                                                                                 | 3.3  | 84        |
| 32 | Decomposition in flocculent sediments of shallow freshwaters and its sensitivity to warming.<br>Freshwater Science, 2019, 38, 899-916.                                                                                                      | 1.8  | 1         |
| 33 | Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nature<br>Communications, 2019, 10, 4281.                                                                                                               | 12.8 | 126       |
| 34 | Complex interactions between climate change, sanitation, and groundwater quality: a case study from<br>Ramotswa, Botswana. Hydrogeology Journal, 2019, 27, 997-1015.                                                                        | 2.1  | 38        |
| 35 | Conservation planning for river-wetland mosaics: A flexible spatial approach to integrate floodplain and upstream catchment connectivity. Biological Conservation, 2019, 236, 356-365.                                                      | 4.1  | 25        |
| 36 | Mass balances of major solutes, nutrients and particulate matter as water moves through the<br>floodplains of the Pantanal (Paraguay River, Brazil). Revista Brasileira De Recursos Hidricos, 2019, 24, .                                   | 0.5  | 9         |

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Evapotranspiration and water use efficiency of continuous maize and maize and soybean in rotation in the upper Midwest U.S Agricultural Water Management, 2019, 221, 92-98.                | 5.6  | 27        |
| 38 | Seasonal and Long-Term Dynamics in Stream Water Sodium Chloride Concentrations and the Effectiveness of Road Salt Best Management Practices. Water, Air, and Soil Pollution, 2019, 230, 1. | 2.4  | 30        |
| 39 | Characterizing seasonal dynamics of Amazonian wetlands for conservation and decision making.<br>Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1073-1082.               | 2.0  | 31        |
| 40 | Limnological effects of a large Amazonian run-of-river dam on the main river and drowned tributary valleys. Scientific Reports, 2019, 9, 16846.                                            | 3.3  | 30        |
| 41 | Nitrate Leaching from Continuous Corn, Perennial Grasses, and Poplar in the US Midwest. Journal of<br>Environmental Quality, 2019, 48, 1849-1855.                                          | 2.0  | 34        |
| 42 | lsotopic evidence for episodic nitrogen fixation in switchgrass (Panicum virgatum L.). Soil Biology and<br>Biochemistry, 2019, 129, 90-98.                                                 | 8.8  | 59        |
| 43 | Carbon debt of field-scale conservation reserve program grasslands converted to annual and perennial bioenergy crops. Environmental Research Letters, 2019, 14, 024019.                    | 5.2  | 31        |
| 44 | Ecosystem carbon exchange on conversion of Conservation Reserve Program grasslands to annual and perennial cropping systems. Agricultural and Forest Meteorology, 2018, 253-254, 151-160.  | 4.8  | 29        |
| 45 | Evapotranspiration is resilient in the face of land cover and climate change in a humid temperate catchment. Hydrological Processes, 2018, 32, 655-663.                                    | 2.6  | 19        |
| 46 | Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans. Limnology and Oceanography Letters, 2018, 3, 143-155.                                             | 3.9  | 75        |
| 47 | Partitioning assimilatory nitrogen uptake in streams: an analysis of stable isotope tracer additions across continents. Ecological Monographs, 2018, 88, 120-138.                          | 5.4  | 60        |
| 48 | Rainfall Intensification Enhances Deep Percolation and Soil Water Content in Tilled and Noâ€īill<br>Cropping Systems of the US Midwest. Vadose Zone Journal, 2018, 17, 1-12.               | 2.2  | 18        |
| 49 | A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nature<br>Communications, 2018, 9, 4491.                                                                    | 12.8 | 189       |
| 50 | The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest<br>U.S. row cropping system. Global Change Biology, 2018, 24, 5948-5960.                  | 9.5  | 40        |
| 51 | Legacy effects of land use on soil nitrous oxide emissions in annual crop and perennial grassland ecosystems. Ecological Applications, 2018, 28, 1362-1369.                                | 3.8  | 25        |
| 52 | Organic matter loading by hippopotami causes subsidy overload resulting in downstream hypoxia and fish kills. Nature Communications, 2018, 9, 1951.                                        | 12.8 | 59        |
| 53 | Unexpected population response to increasing temperature in the context of a strong species interaction. Ecological Applications, 2017, 27, 1657-1665.                                     | 3.8  | 8         |
| 54 | A Global Assessment of Inland Wetland Conservation Status. BioScience, 2017, 67, 523-533.                                                                                                  | 4.9  | 152       |

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes. Science, 2017, 356, .                                                                                    | 12.6 | 314       |
| 56 | LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes. GigaScience, 2017, 6, 1-22.                                   | 6.4  | 102       |
| 57 | Ecosystem Water-Use Efficiency of Annual Corn and Perennial Grasslands: Contributions from Land-Use History and Species Composition. Ecosystems, 2016, 19, 1001-1012.                           | 3.4  | 41        |
| 58 | Phosphorus release from the drying and reflooding of diverse shallow sediments. Biogeochemistry, 2016, 130, 159-176.                                                                            | 3.5  | 31        |
| 59 | Nitrogen fertilization challenges the climate benefit of cellulosic biofuels. Environmental Research<br>Letters, 2016, 11, 064007.                                                              | 5.2  | 69        |
| 60 | Changes in river water quality caused by a diversion hydropower dam bordering the Pantanal<br>floodplain. Hydrobiologia, 2016, 768, 223-238.                                                    | 2.0  | 45        |
| 61 | Evapotranspiration of annual and perennial biofuel crops in a variable climate. GCB Bioenergy, 2015, 7, 1344-1356.                                                                              | 5.6  | 54        |
| 62 | Heat-induced mass mortality of invasive zebra mussels ( <i>Dreissena polymorpha</i> ) at sublethal water temperatures. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1221-1229. | 1.4  | 33        |
| 63 | Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sensing of Environment, 2015, 158, 348-361.          | 11.0 | 213       |
| 64 | Does flood rhythm drive ecosystem responses in tropical riverscapes?. Ecology, 2015, 96, 684-692.                                                                                               | 3.2  | 77        |
| 65 | Natural stressors in uncontaminated sediments of shallow freshwaters: The prevalence of sulfide, ammonia, and reduced iron. Environmental Toxicology and Chemistry, 2015, 34, 467-479.          | 4.3  | 18        |
| 66 | Comparative water use by maize, perennial crops, restored prairie, and poplar trees in the US Midwest.<br>Environmental Research Letters, 2015, 10, 064015.                                     | 5.2  | 58        |
| 67 | Colonization and Spread of Limnoperna fortunei in South America. , 2015, , 333-355.                                                                                                             |      | 25        |
| 68 | Effects of a diversion hydropower facility on the hydrological regime of the Correntes River, a<br>tributary to the Pantanal floodplain, Brazil. Journal of Hydrology, 2015, 531, 810-820.      | 5.4  | 56        |
| 69 | You are not always what we think you eat: selective assimilation across multiple wholeâ€stream<br>isotopic tracer studies. Ecology, 2014, 95, 2757-2767.                                        | 3.2  | 44        |
| 70 | UNDERSTANDING AND OVERCOMING BASELINE ISOTOPIC VARIABILITY IN RUNNING WATERS. River Research and Applications, 2014, 30, 155-165.                                                               | 1.7  | 47        |
| 71 | Farming for Ecosystem Services: An Ecological Approach to Production Agriculture. BioScience, 2014, 64, 404-415.                                                                                | 4.9  | 184       |
| 72 | Re-flooding a Historically Drained Wetland Leads to Rapid Sediment Phosphorus Release. Ecosystems,<br>2014, 17, 641-656.                                                                        | 3.4  | 40        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Organic matter stocks increase with degree of invasion in temperate inland wetlands. Plant and Soil, 2014, 385, 107-123.                                                                                            | 3.7  | 17        |
| 74 | The Relative Importance of Groundwater and its Ecological Implications in Diverse Glacial Wetlands.<br>American Midland Naturalist, 2014, 172, 205-218.                                                             | 0.4  | 3         |
| 75 | Floodplain inundation and vegetation dynamics in the Alligator Rivers region (Kakadu) of northern<br>Australia assessed using optical and radar remote sensing. Remote Sensing of Environment, 2014, 147,<br>43-55. | 11.0 | 93        |
| 76 | Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa.<br>Water Research, 2014, 54, 188-198.                                                                          | 11.3 | 130       |
| 77 | Plant-mediated transport and isotopic composition of methane from shallow tropical wetlands.<br>Inland Waters, 2014, 4, 369-376.                                                                                    | 2.2  | 8         |
| 78 | Assessing the seasonal dynamics of inundation, turbidity, and aquatic vegetation in the Australian wet–dry tropics using optical remote sensing. Ecohydrology, 2013, 6, 312-323.                                    | 2.4  | 59        |
| 79 | From set-aside grassland to annual and perennial cellulosic biofuel crops: Effects of land use change on carbon balance. Agricultural and Forest Meteorology, 2013, 182-183, 1-12.                                  | 4.8  | 34        |
| 80 | Quantifying the production of dissolved organic nitrogen in headwater streams using<br><sup>15</sup> N tracer additions. Limnology and Oceanography, 2013, 58, 1271-1285.                                           | 3.1  | 21        |
| 81 | Productivity, Disturbance and Ecosystem Size Have No Influence on Food Chain Length in Seasonally<br>Connected Rivers. PLoS ONE, 2013, 8, e66240.                                                                   | 2.5  | 44        |
| 82 | A Source of Terrestrial Organic Carbon to Investigate the Browning of Aquatic Ecosystems. PLoS ONE, 2013, 8, e75771.                                                                                                | 2.5  | 36        |
| 83 | Long-Term Ecological Research in a Human-Dominated World. BioScience, 2012, 62, 342-353.                                                                                                                            | 4.9  | 53        |
| 84 | Nitrogen transformations in a through-flow wetland revealed using whole-ecosystem pulsed 15 N additions. Limnology and Oceanography, 2012, 57, 221-234.                                                             | 3.1  | 13        |
| 85 | Phosphorus addition reverses the positive effect of zebra mussels (Dreissena polymorpha) on the toxic cyanobacterium, Microcystis aeruginosa. Water Research, 2012, 46, 3471-3478.                                  | 11.3 | 35        |
| 86 | Impacts of glacial/interglacial cycles on continental rock weathering inferred using Sr/Ca and 87Sr/86Sr ratios in Michigan watersheds. Chemical Geology, 2012, 300-301, 97-108.                                    | 3.3  | 4         |
| 87 | The fate of assimilated nitrogen in streams: an <i>in situ</i> benthic chamber study. Freshwater<br>Biology, 2012, 57, 1113-1125.                                                                                   | 2.4  | 26        |
| 88 | Correction to "Evidence for carbon sequestration by agricultural liming― Global Biogeochemical<br>Cycles, 2012, 26, n/a-n/a.                                                                                        | 4.9  | 0         |
| 89 | Incorporating spatial variation of nitrification and denitrification rates into wholeâ€lake nitrogen dynamics. Journal of Geophysical Research, 2012, 117,                                                          | 3.3  | 30        |
| 90 | Seasonal changes in water quality and macrophytes and the impact of cattle on tropical floodplain waterholes. Marine and Freshwater Research, 2012, 63, 788.                                                        | 1.3  | 38        |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Long-term nitrate loss along an agricultural intensity gradient in the Upper Midwest USA.<br>Agriculture, Ecosystems and Environment, 2012, 149, 10-19.                                                     | 5.3 | 137       |
| 92  | Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wetâ€dry<br>tropical river. Freshwater Biology, 2012, 57, 435-450.                                                 | 2.4 | 57        |
| 93  | Biogeochemical time lags may delay responses of streams to ecological restoration. Freshwater<br>Biology, 2012, 57, 43-57.                                                                                  | 2.4 | 174       |
| 94  | Fish mediate high food web connectivity in the lower reaches of a tropical floodplain river.<br>Oecologia, 2012, 168, 829-838.                                                                              | 2.0 | 113       |
| 95  | Denitrification by sulfur-oxidizing bacteria in a eutrophic lake. Aquatic Microbial Ecology, 2012, 66, 283-293.                                                                                             | 1.8 | 28        |
| 96  | Seasonal contrasts in carbon resources and ecological processes on a tropical floodplain.<br>Freshwater Biology, 2011, 56, 1047-1064.                                                                       | 2.4 | 42        |
| 97  | Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems. Frontiers in Ecology and the Environment, 2011, 9, 229-238.                                                          | 4.0 | 104       |
| 98  | Water and energy footprints of bioenergy crop production on marginal lands. GCB Bioenergy, 2011, 3, 208-222.                                                                                                | 5.6 | 42        |
| 99  | CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of cultivation. GCB Bioenergy, 2011, 3, 401-412.                                                                | 5.6 | 39        |
| 100 | The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations. , 2011, 21, 1055-1067.                                                                                             |     | 131       |
| 101 | The â€~wet-dry' in the wet-dry tropics drives river ecosystem structure and processes in northern<br>Australia. Freshwater Biology, 2011, 56, 2169-2195.                                                    | 2.4 | 115       |
| 102 | Historical reconstruction of floodplain inundation in the Pantanal (Brazil) using neural networks.<br>Journal of Hydrology, 2011, 399, 376-384.                                                             | 5.4 | 58        |
| 103 | Ecological management of intensively cropped agro-ecosystems improves soil quality with sustained productivity. Agriculture, Ecosystems and Environment, 2011, 140, 419-429.                                | 5.3 | 136       |
| 104 | Abiotic factors controlling the establishment and abundance of the invasive golden mussel<br>Limnoperna fortunei. Biological Invasions, 2011, 13, 717-729.                                                  | 2.4 | 53        |
| 105 | Cross-stream comparison of substrate-specific denitrification potential. Biogeochemistry, 2011, 104, 381-392.                                                                                               | 3.5 | 59        |
| 106 | Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems. Frontiers in Ecology and the Environment, 2011, 9, 44-52.                                      | 4.0 | 162       |
| 107 | Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 214-219.                              | 7.1 | 517       |
| 108 | Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production.<br>Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13864-13869. | 7.1 | 184       |

| #   | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Oxygen Depletion Events Control the Invasive Golden Mussel (Limnoperna fortunei) in a Tropical<br>Floodplain. Wetlands, 2010, 30, 705-716.                                                                                                | 1.5  | 25        |
| 110 | Small-scale spatial variation of inundation dynamics in a floodplain of the Pantanal (Brazil).<br>Hydrobiologia, 2010, 638, 223-233.                                                                                                      | 2.0  | 65        |
| 111 | Biogeochemical implications of climate change for tropical rivers and floodplains. Hydrobiologia, 2010, 657, 19-35.                                                                                                                       | 2.0  | 64        |
| 112 | Interâ€regional comparison of landâ€use effects on stream metabolism. Freshwater Biology, 2010, 55,<br>1874-1890.                                                                                                                         | 2.4  | 267       |
| 113 | Modeling the potential distribution of the invasive golden mussel Limnoperna fortunei in the Upper<br>Paraguay River system using limnological variables. Brazilian Journal of Biology, 2010, 70, 831-840.                                | 0.9  | 33        |
| 114 | Forecasting the expansion of the invasive golden mussel Limnoperna fortunei in Brazilian and North<br>American rivers based on its occurrence in the Paraguay River and Pantanal wetland of Brazil. Aquatic<br>Invasions, 2010, 5, 59-73. | 1.6  | 61        |
| 115 | Biogeochemical implications of climate change for tropical rivers and floodplains. , 2010, , 19-35.                                                                                                                                       |      | 1         |
| 116 | Seasonal effects of zebra mussels on littoral nitrogen transformation rates in Gull Lake, Michigan,<br>U.S.A Freshwater Biology, 2009, 54, 1427-1443.                                                                                     | 2.4  | 30        |
| 117 | Inorganic carbon isotope systematics in soil profiles undergoing silicate and carbonate weathering<br>(Southern Michigan, USA). Chemical Geology, 2009, 264, 139-153.                                                                     | 3.3  | 40        |
| 118 | Biogenic calcite–phosphorus precipitation as a negative feedback to lake eutrophication. Canadian<br>Journal of Fisheries and Aquatic Sciences, 2009, 66, 343-350.                                                                        | 1.4  | 58        |
| 119 | Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake. Limnology and Oceanography, 2009, 54, 653-665.                                                                                                   | 3.1  | 165       |
| 120 | Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification.<br>Limnology and Oceanography, 2009, 54, 666-680.                                                                                             | 3.1  | 181       |
| 121 | Sediment nitrate manipulation using porewater equilibrators reveals potential for N and S coupling in freshwaters. Aquatic Microbial Ecology, 2009, 54, 233-241.                                                                          | 1.8  | 12        |
| 122 | NO3 â^'-Driven SO4 2â^' Production in Freshwater Ecosystems: Implications for N and S Cycling.<br>Ecosystems, 2008, 11, 908-922.                                                                                                          | 3.4  | 102       |
| 123 | Rates of anaerobic microbial metabolism in wetlands of divergent hydrology on a glacial landscape.<br>Wetlands, 2008, 28, 703-714.                                                                                                        | 1.5  | 15        |
| 124 | Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 2008, 452, 202-205.                                                                                                                       | 27.8 | 1,097     |
| 125 | The production and emission of nitrous oxide from headwater streams in the Midwestern United States. Global Change Biology, 2008, 14, 878-894.                                                                                            | 9.5  | 132       |
|     |                                                                                                                                                                                                                                           |      |           |

Primary Production in Tropical Streams and Rivers. , 2008, , 23-42.

| #   | Article                                                                                                                                                                                                                        | IF         | CITATIONS             |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|
| 127 | Invasive zebra mussels ( <i>Dreissena polymorpha</i> ) increase cyanobacterial toxin concentrations in<br>low-nutrient lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 448-455.                           | 1.4        | 81                    |
| 128 | Sources and transport of carbon and nitrogen in the River Sava watershed, a major tributary of the<br>River Danube. Applied Geochemistry, 2008, 23, 3685-3698.                                                                 | 3.0        | 61                    |
| 129 | Silicate and carbonate mineral weathering in soil profiles developed on Pleistocene glacial drift<br>(Michigan, USA): Mass balances based on soil water geochemistry. Geochimica Et Cosmochimica Acta,<br>2008, 72, 1027-1042. | 3.9        | 33                    |
| 130 | Mineral weathering rates in glacial drift soils (SW Michigan, USA): New constraints from seasonal sampling of waters and gases at soil monoliths. Chemical Geology, 2008, 249, 129-154.                                        | 3.3        | 8                     |
| 131 | Assimilatory uptake rather than nitrification and denitrification determines nitrogen removal patterns in streams of varying land use. Limnology and Oceanography, 2008, 53, 2558-2572.                                        | 3.1        | 66                    |
| 132 | Controls on algal abundance in a eutrophic river with varying degrees of impoundment (Kalamazoo) Tj ETQq0 0 (                                                                                                                  | D rgBT /Ov | verlock 10 Tf 5<br>14 |
| 133 | Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment, 2007, 5, 89-96.                                                      | 4.0        | 906                   |
| 134 | Measurement of the stable isotope ratio of dissolved N <sub>2</sub> in <sup>15</sup> N tracer experiments. Limnology and Oceanography: Methods, 2007, 5, 233-240.                                                              | 2.0        | 54                    |
| 135 | Remote sensing of floodplain geomorphology as a surrogate for biodiversity in a tropical river system (Madre de Dios, Peru). Geomorphology, 2007, 89, 23-38.                                                                   | 2.6        | 158                   |
| 136 | Freshwater conservation planning in data-poor areas: An example from a remote Amazonian basin<br>(Madre de Dios River, Peru and Bolivia). Biological Conservation, 2007, 135, 484-501.                                         | 4.1        | 104                   |
| 137 | Evidence for carbon sequestration by agricultural liming. Clobal Biogeochemical Cycles, 2007, 21, n/a-n/a.                                                                                                                     | 4.9        | 115                   |
| 138 | Flow variability in dryland rivers: boom, bust and the bits in between. River Research and Applications, 2006, 22, 179-186.                                                                                                    | 1.7        | 268                   |
| 139 | Australia's tropical river systems: current scientific understanding and critical knowledge gaps for sustainable management. Marine and Freshwater Research, 2005, 56, 243.                                                    | 1.3        | 51                    |
| 140 | Persistence of aquatic refugia between flow pulses in a dryland river system(Cooper Creek, Australia).<br>Limnology and Oceanography, 2005, 50, 743-754.                                                                       | 3.1        | 92                    |
| 141 | Complex interactions between the zebra mussel, <i>Dreissena polymorpha</i> , and the harmful phytoplankter, <i>Microcystis aeruginosa</i> . Limnology and Oceanography, 2005, 50, 896-904.                                     | 3.1        | 78                    |
| 142 | Rapid Removal of Nitrate and Sulfate in Freshwater Wetland Sediments. Journal of Environmental<br>Quality, 2005, 34, 2062-2071.                                                                                                | 2.0        | 88                    |
| 143 | Separation of algae from detritus for stable isotope or ecological stoichiometry studies using density fractionation in colloidal silica. Limnology and Oceanography: Methods, 2005, 3, 149-157.                               | 2.0        | 118                   |
| 144 | Specular Reflection and Diffuse Reflectance Spectroscopy of Soils. Applied Spectroscopy, 2005, 59, 39-46.                                                                                                                      | 2.2        | 37                    |

| #   | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global<br>Change Biology, 2004, 10, 530-544.                                                                                | 9.5  | 212       |
| 146 | Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams. Oecologia, 2004, 140, 458-467.                                                                                                             | 2.0  | 108       |
| 147 | Seasonal inundation patterns in two large savanna floodplains of South America: the Llanos de<br>Moxos(Bolivia) and the Llanos del Orinoco(Venezuela and Colombia). Hydrological Processes, 2004,<br>18, 2103-2116. | 2.6  | 148       |
| 148 | The role of instream vs allochthonous N in stream food webs: modeling the results of an isotope addition experiment. Journal of the North American Benthological Society, 2004, 23, 429-448.                        | 3.1  | 46        |
| 149 | Dominance of the noxious cyanobacterium <i>Microcystis aeruginosa</i> in lowâ€nutrient lakes is associated with exotic zebra mussels. Limnology and Oceanography, 2004, 49, 482-487.                                | 3.1  | 129       |
| 150 | Stream denitrification and total nitrate uptake rates measured using a field <sup>15</sup> N tracer addition approach. Limnology and Oceanography, 2004, 49, 809-820.                                               | 3.1  | 164       |
| 151 | Factors affecting ammonium uptake in streams - an inter-biome perspective. Freshwater Biology, 2003, 48, 1329-1352.                                                                                                 | 2.4  | 233       |
| 152 | Can uptake length in streams be determined by nutrient addition experiments? Results from an interbiome comparison study. Journal of the North American Benthological Society, 2002, 21, 544-560.                   | 3.1  | 186       |
| 153 | N uptake as a function of concentration in streams. Journal of the North American Benthological Society, 2002, 21, 206-220.                                                                                         | 3.1  | 222       |
| 154 | Comparison of inundation patterns among major South American floodplains. Journal of Geophysical<br>Research, 2002, 107, LBA 5-1.                                                                                   | 3.3  | 190       |
| 155 | A Cross-System Comparison of Bacterial and Fungal Biomass in Detritus Pools of Headwater Streams.<br>Microbial Ecology, 2002, 43, 55-66.                                                                            | 2.8  | 193       |
| 156 | Human impacts on hydrology in the pantanal wetland of South America. Water Science and<br>Technology, 2002, 45, 35-44.                                                                                              | 2.5  | 2         |
| 157 | Foodweb analysis of the Orinoco floodplain based on production estimates and stable isotope data.<br>Journal of the North American Benthological Society, 2001, 20, 241-254.                                        | 3.1  | 175       |
| 158 | Control of Nitrogen Export from Watersheds by Headwater Streams. Science, 2001, 292, 86-90.                                                                                                                         | 12.6 | 1,209     |
| 159 | Bivalve diets in a midwestern U.S. stream: A stable isotope enrichment study. Limnology and Oceanography, 2001, 46, 514-522.                                                                                        | 3.1  | 157       |
| 160 | Inter-biome comparison of factors controlling stream metabolism. Freshwater Biology, 2001, 46, 1503-1517.                                                                                                           | 2.4  | 360       |
| 161 | Nitrogen uptake and transformation in a midwestern U.S. stream: A stable isotope enrichment study.<br>Biogeochemistry, 2001, 54, 297-340.                                                                           | 3.5  | 76        |
| 162 | Methane emissions from the Orinoco River floodplain, Venezuela. Biogeochemistry, 2000, 51, 113-140.                                                                                                                 | 3.5  | 93        |

| #   | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Ecological Determinism on the Orinoco Floodplain. BioScience, 2000, 50, 681.                                                                                                                                                                                                      | 4.9  | 159       |
| 164 | Potential effects of a major navigation project (Paraguay-Paraná HidrovÃa) on inundation in the<br>Pantanal floodplains. River Research and Applications, 1999, 15, 289-299.                                                                                                      | 0.8  | 76        |
| 165 | Potential effects of a major navigation project (Paraguay–Paraná HidrovÃa) on inundation in the<br>Pantanal floodplains. River Research and Applications, 1999, 15, 289-299.                                                                                                      | 0.8  | 2         |
| 166 | Passive microwave observations of inundation area and the area/stage relation in the Amazon River floodplain. International Journal of Remote Sensing, 1998, 19, 3055-3074.                                                                                                       | 2.9  | 131       |
| 167 | Dynamics of floodplain inundation in the alluvial fan of the Taquari River (Pantanal, Brazil).<br>Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie<br>International Association of Theoretical and Applied Limnology, 1998, 26, 916-922.  | 0.1  | 12        |
| 168 | Limnological conditions associated with natural fish kills in the Pantanal Wetland of Brazil.<br>Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie<br>International Association of Theoretical and Applied Limnology, 1998, 26, 2189-2193. | 0.1  | 10        |
| 169 | An anoxic event and other biogeochemical effects of the Pantanal wetland on the Paraguay River.<br>Limnology and Oceanography, 1997, 42, 257-272.                                                                                                                                 | 3.1  | 132       |
| 170 | Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing. Archiv Für Hydrobiologie, 1996, 137, 1-23.                                                                                                                         | 1.1  | 227       |
| 171 | Determination of inundation area in the Amazon River floodplain using the SMMR 37 GHz polarization difference. Remote Sensing of Environment, 1994, 48, 70-76.                                                                                                                    | 11.0 | 118       |
| 172 | Stable carbon and nitrogen isotopes in algae and detritus from the Orinoco River floodplain,<br>Venezuela. Geochimica Et Cosmochimica Acta, 1992, 56, 4237-4246.                                                                                                                  | 3.9  | 149       |
| 173 | Energy sources for aquatic animals in the Orinoco River floodplain: evidence from stable isotopes.<br>Oecologia, 1992, 89, 324-330.                                                                                                                                               | 2.0  | 232       |
| 174 | Inundation area and morphometry of lakes on the Amazon River floodplain, Brazil. Archiv Für<br>Hydrobiologie, 1992, 123, 385-400.                                                                                                                                                 | 1.1  | 94        |
| 175 | Responses of zooplankton and zoobenthos to experimental acidification in a high-elevation lake<br>(Sierra Nevada, California, U.S.A.). Freshwater Biology, 1990, 23, 571-586.                                                                                                     | 2.4  | 33        |
| 176 | Zooplankton abundance and evidence for its reduction by macrophyte mats in two Orinoco<br>floodplain lakes. Journal of Plankton Research, 1990, 12, 345-363.                                                                                                                      | 1.8  | 51        |
| 177 | Basin morphology in relation to chemical and ecological characteristics of lakes on the Orinoco<br>River floodplain, Venezuela. Archiv Für Hydrobiologie, 1990, 119, 393-425.                                                                                                     | 1.1  | 69        |
| 178 | Causes of seasonality in the chemistry of a lake on the Orinoco River floodplain, Venezuela1.<br>Limnology and Oceanography, 1987, 32, 1277-1290.                                                                                                                                 | 3.1  | 122       |
| 179 | Major element chemistry, weathering and element yields for the Caura River drainage, Venezuela.<br>Biogeochemistry, 1987, 4, 159-181.                                                                                                                                             | 3.5  | 56        |
| 180 | Evidence That Filterable Phosphorus Is a Significant Atmospheric Link in the Phosphorus Cycle. Oikos,<br>1985, 45, 428.                                                                                                                                                           | 2.7  | 37        |

| #   | Article                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Nitrate Reduction, Denitrification, and Dissimilatory Nitrate Reduction to Ammonium in Wetland Sediments. Soil Science Society of America Book Series, 0, , 519-537. | 0.3 | 4         |