
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4647005/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magneto-optical absorption properties of topological insulator thin films. Journal of Physics Condensed Matter, 2022, 34, 305702.	1.8	2
2	Large power dissipation of hot Dirac fermions in twisted bilayer graphene. Journal of Physics Condensed Matter, 2021, 33, 115704.	1.8	4
3	Giant thermopower and power factor in magic angle twisted bilayer graphene at low temperature. Journal of Physics Condensed Matter, 2021, 33, 245704.	1.8	5
4	Oscillations of the electron energy loss rate in two-dimensional transition-metal dichalcogenides in the presence of a quantizing magnetic field. Physical Review B, 2021, 103, .	3.2	7
5	Quantum magnetotransport properties of silicene: Influence of the acoustic phonon correction. Physical Review B, 2021, 104, .	3.2	6
6	Power loss of hot Dirac fermions in silicene and its near equivalence with graphene. Semiconductor Science and Technology, 2021, 36, 025005.	2.0	4
7	Magneto-optical absorption in silicene and germanene induced by electric and Zeeman fields. Physical Review B, 2020, 101, .	3.2	25
8	Thermoelectric transport properties in 3D Dirac semimetal Cd ₃ As ₂ . Journal of Physics Condensed Matter, 2020, 32, 225704.	1.8	9
9	Magneto-optical transport properties of monolayer transition metal dichalcogenides. Physical Review B, 2020, 101, .	3.2	69
10	Drift velocity saturation and large current density in intrinsic three-dimensional Dirac semimetal cadmium arsenide. Journal of Physics Condensed Matter, 2020, 32, 265701.	1.8	1
11	Phonon-limited mobility of Dirac fermions in three-dimensional Dirac semimetal Cd3As2. Journal of Applied Physics, 2019, 126, 135703.	2.5	5
12	The role of vector potential coupling in the hot electron cooling power in bilayer graphene at low temperature. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 95, 144-148.	2.7	4
13	Hot electron cooling in Dirac semimetal Cd ₃ As ₂ due to polar optical phonons. Journal of Physics Condensed Matter, 2018, 30, 265303.	1.8	12
14	+Cerenkov emission of terahertz acoustic phonons generated electrically from monolayers of transition metal dichalcogenides. Journal of Applied Physics, 2017, 121, .	2.5	4
15	Effects of a piezoelectric substrate on phonon-drag thermopower in monolayer graphene. Journal of Physics Condensed Matter, 2017, 29, 235303.	1.8	1
16	Phonon-drag magnetoquantum oscillations in graphene. Journal of Physics Condensed Matter, 2017, 29, 305301.	1.8	2
17	Electron cooling in three-dimensional Dirac fermion systems at low temperature: Effect of screening. Physica Status Solidi - Rapid Research Letters, 2016, 10, 248-252.	2.4	15
18	Amplification of terahertz frequency acoustic phonons by drifting electrons in three-dimensional Dirac semimetals. Journal of Applied Physics, 2016, 120, 125705.	2.5	1

#	Article	IF	CITATIONS
19	Cerenkov emission of acoustic phonons electrically generated from three-dimensional Dirac semimetals. Journal of Applied Physics, 2016, 119, 195701.	2.5	9
20	Acoustic phonon-limited diffusion thermopower in monolayer MoS2. AIP Conference Proceedings, 2015, , .	0.4	0
21	Low temperature phonon-drag thermopower in a monolayer MoS2. AIP Conference Proceedings, 2015, ,	0.4	0
22	Acoustic phonon assisted free-carrier optical absorption in an n-type monolayer MoS2 and other transition-metal dichalcogenides. Journal of Applied Physics, 2015, 118, 044308.	2.5	10
23	Phonon-drag thermopower in 3D Dirac semimetals. Journal of Physics Condensed Matter, 2015, 27, 455801.	1.8	5
24	Phonon-drag thermopower in a monolayer MoS ₂ . Journal of Physics Condensed Matter, 2014, 26, 485013.	1.8	11
25	Hot-electron cooling by acoustic and optical phonons in monolayers of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi mathvariant="normal">MoS <mml:mn>2</mml:mn></mml:mi </mml:msub> and other transition-metal dichalcogenides. Physical Review B. 2014. 90</mml:math 	3.2	76
26	Electronic thermal conductivity in suspended and supported bilayer graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 47, 188-192.	2.7	11
27	Effect of band anisotropy on phonon-drag thermopower in AlAs quantum wells: Strong enhancement of phonon drag. Physical Review B, 2013, 87, .	3.2	0
28	Phonon-drag thermopower in anisotropic AlAs quantum wells. , 2013, , .		0
29	Effect of chiral property on hot phonon distribution and energy loss rate due to surface polar phonons in a bilayer graphene. Journal of Applied Physics, 2013, 113, 063705.	2.5	14
30	Energy and momentum loss rates of hot electrons in a supported bilayer graphene. , 2013, , .		0
31	Phonon-drag thermopower in an armchair graphene nanoribbon. Journal of Physics Condensed Matter, 2011, 23, 275303.	1.8	7
32	Diffusion Thermopower In GaNâ^•AlGaN Heterostructures. , 2010, , .		0
33	Enhancement of phonon-drag thermopower in bilayer graphene. Physical Review B, 2010, 82, .	3.2	30
34	Power loss by a two-dimensional hole gas in a Si/Si0.8Ge0.2 heterostructure over a wide temperature range. Journal of Applied Physics, 2010, 107, 123716.	2.5	2
35	Interaction of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Physical Review B, 2009, 79, .	3.2	125
36	Electron-phonon interaction in a quantum wire in the Bloch-Gruneisen regime. Physical Review B,	3.2	16

#	Article	IF	CITATIONS
37	Effect of the Pekar mechanism on the phonon-drag thermopower inp-typeSiâ^•Si1â^'xGexheterostructures. Physical Review B, 2005, 72, .	3.2	3
38	Effect of acoustic-phonon confinement on the phonon-drag thermopower of a two-dimensional electron gas in a semiconductor thin film. Physical Review B, 2004, 69, .	3.2	10
39	Phonon drag thermopower in an AlGaN/GaN heterostructure. Physica Status Solidi (B): Basic Research, 2003, 238, 40-44.	1.5	2
40	Hot-electron energy relaxation in GaAs/GaAlAs two-dimensional structures: importance of two-phonon processes. Semiconductor Science and Technology, 2002, 17, 557-564.	2.0	6
41	Quantitative Interpretation of Thermopower Data for Composite Fermions in a Half-Filled Landau Level. Physical Review Letters, 1999, 83, 4820-4823.	7.8	12
42	Thermal Conductivity of GaAs Substrates in GaAs/GaAlAs Heterostructures. Physica Status Solidi A, 1999, 173, 337-347.	1.7	2
43	Energy Loss Rate of Hot Electrons Due to Confined and Interface Optical Phonons in Semiconductor Quantum Wells in Quantizing Magnetic Field. Physica Status Solidi (B): Basic Research, 1998, 209, 37-47.	1.5	16
44	Energy Loss Rate of Hot Electrons Due to Confined and Interface Optical Phonons in Semiconductor Quantum Wells in Quantizing Magnetic Field. , 1998, 209, 37.		1
45	Energy Loss Rate of Hot Electrons Due to Confined and Interface Optical Phonons in Semiconductor Quantum Wells in Quantizing Magnetic Field. Physica Status Solidi (B): Basic Research, 1998, 209, 37-47.	1.5	1
46	Phononâ€assisted twoâ€photon magnetoabsorption in an indirect band gap semiconductor quantum well. Physica Status Solidi (B): Basic Research, 1996, 197, 51-60.	1.5	0
47	Localized phonon-assisted cyclotron resonance in GaAs/AlAs quantum wells. Physical Review B, 1994, 49, 16459-16466.	3.2	49
48	Free Carrier Absorption in Quantum Well Structures Due to Confined and Interface Optical Phonons. Physica Status Solidi (B): Basic Research, 1994, 182, 119-131.	1.5	11
49	Electron-confined LO phonon scattering rates in GaAs/AlAs quantum wells in the presence of a quantizing magnetic field. Semiconductor Science and Technology, 1993, 8, 1571-1574.	2.0	8
50	Two-photon absorption in GaAs/GaAlAs superlattices. Semiconductor Science and Technology, 1993, 8, 2072-2076.	2.0	4
51	Electronâ€interface LO phonon scattering rates in quantum wells in a quantizing magnetic field. Journal of Applied Physics, 1993, 74, 4561-4564.	2.5	7
52	Parallel and perpendicular phonon-drag thermopower in semiconductor superlattices. Semiconductor Science and Technology, 1992, 7, 1344-1349.	2.0	3
53	Phonon-drag magneto-thermopower in semiconductor superlattices. Semiconductor Science and Technology, 1992, 7, 931-934.	2.0	1
54	Two-photon magnetoabsorption in GaAs/GaAlAs quantum wells. Semiconductor Science and Technology, 1992, 7, 1422-1424.	2.0	2

#	Article	IF	CITATIONS
55	Free carrier absorption in semiconducting quantum wells for confined LO phonon scattering. Journal of Applied Physics, 1992, 72, 4966-4968.	2.5	28
56	Diffusion Thermopower in (in, Ga) As Quantum Wells. Physica Status Solidi (B): Basic Research, 1992, 170, K37.	1.5	1
57	Cyclotronâ€phonon resonance in quasiâ€twoâ€dimensional semiconducting structures. Journal of Applied Physics, 1991, 70, 2216-2219.	2.5	47
58	Influence of Umklapp processes on the sign of phonon-drag thermopower in semiconductor superlattices. Journal of Physics Condensed Matter, 1991, 3, 5445-5449.	1.8	3
59	Phononâ€drag thermopower in semiconducting quantum well structures in a quantizing magnetic field. Journal of Applied Physics, 1990, 68, 5919-5921.	2.5	6
60	Phonon-drag thermopower of a two-dimensional electron gas in a quantizing magnetic field. Physical Review B, 1989, 40, 1377-1380.	3.2	30
61	A calculation of the phonon-drag thermopower of a 1D electron gas. Journal of Physics Condensed Matter, 1989, 1, 3939-3946.	1.8	9
62	Freeâ€carrier absorption in semiconducting quantumâ€well wires for nonpolar opticalâ€phonon scattering. Journal of Applied Physics, 1988, 63, 1799-1801.	2.5	6
63	Electron-Phonon Scattering in Semiconductor Superlattices in a Quantizing Magnetic Field. Japanese Journal of Applied Physics, 1988, 27, 730-733.	1.5	1
64	Warm electrons in quantum well wires. Semiconductor Science and Technology, 1987, 2, 360-362.	2.0	1
65	Quantum Theory of Thermopower in Quasiâ€Twoâ€Dimensional Semiconductor Quantum Well Structures. Physica Status Solidi (B): Basic Research, 1987, 139, 267-271.	1.5	6
66	Electronic Thermal Conductivity in Quasiâ€Oneâ€Dimensional Semiconductor Quantum Well Structures. Physica Status Solidi (B): Basic Research, 1987, 142, K25.	1.5	0
67	On the Electrical Conductivity and Thermopower in Quasiâ€Twoâ€Dimensional Semiconductor Quantum Well Structures in Quantizing MagnÓtic Field. Physica Status Solidi (B): Basic Research, 1987, 142, K131.	1.5	1
68	On the Interpretation of Thermopower Measurements in GaAsâ€Al _x Ga _{1â€x} As Heterostructures. Physica Status Solidi (B): Basic Research, 1987, 143, K25.	1.5	0
69	Quantum Theory of Thermopower in Quantum Well Wires. Physica Status Solidi (B): Basic Research, 1987, 144, 739-744.	1.5	3
70	Electronic thermal conductivity in quasiâ€ŧwo―dimensional semiconductor quantum well structures. Physica Status Solidi (B): Basic Research, 1986, 135, K163.	1.5	1
71	Thermopower in Quasiâ€Twoâ€Dimensional Semiconductor Quantum Well Structures. Physica Status Solidi (B): Basic Research, 1986, 137, 683-689.	1.5	13
72	Hot-electron transport in semiconducting quantum well wires. Journal of Physics C: Solid State Physics, 1986, 19, 5453-5457.	1.5	11

#	Article	IF	CITATIONS
73	Contribution of Electronâ€Twoâ€Phonon Scattering to Free Carrier Absorption in nâ€GaSb. Physica Status Solidi (B): Basic Research, 1985, 128, K117.	1.5	1
74	Free-carrier absorption in semiconducting quantum well wires. Journal of Physics C: Solid State Physics, 1985, 18, 6647-6652.	1.5	25
75	Thermopower enhancement in semiconducting quantum well wires for acoustic phonon scattering. Journal of Applied Physics, 1985, 58, 3643-3645.	2.5	30
76	Freeâ€carrier absorption in quasiâ€ŧwoâ€dimensional semiconducting structures for nonpolar optical phonon scattering. Journal of Applied Physics, 1985, 58, 3640-3642.	2.5	12
77	The Electronâ€Two Shortâ€Wavelength Phonon Scattering in Nonâ€Polar Semiconductors. Physica Status Solidi (B): Basic Research, 1977, 80, 603-609.	1.5	4
78	Phonon-drag thermopower and thermoelectric performance of MoS\$_2\$ monolayer in quantizing magnetic field. Journal of Physics Condensed Matter, 0, , .	1.8	0