

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4646466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	299
2	Energetic electron acceleration by unsteady magnetic reconnection. Nature Physics, 2013, 9, 426-430.	16.7	215
3	Intermittent energy dissipation by turbulent reconnection. Geophysical Research Letters, 2017, 44, 37-43.	4.0	176
4	Dipolarization fronts as a consequence of transient reconnection: In situ evidence. Geophysical Research Letters, 2013, 40, 6023-6027.	4.0	168
5	Electric structure of dipolarization front at subâ€proton scale. Geophysical Research Letters, 2012, 39, .	4.0	160
6	Occurrence rate of earthwardâ€propagating dipolarization fronts. Geophysical Research Letters, 2012, 39, .	4.0	141
7	Pitch angle distribution of suprathermal electrons behind dipolarization fronts: A statistical overview. Journal of Geophysical Research, 2012, 117, .	3.3	136
8	Whistlerâ€mode waves inside flux pileup region: Structured or unstructured?. Journal of Geophysical Research: Space Physics, 2014, 119, 9089-9100.	2.4	112
9	How to find magnetic nulls and reconstruct field topology with MMS data?. Journal of Geophysical Research: Space Physics, 2015, 120, 3758-3782.	2.4	111
10	Electron acceleration in the reconnection diffusion region: Cluster observations. Geophysical Research Letters, 2012, 39, .	4.0	95
11	On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS. Geophysical Research Letters, 2016, 43, 1023-1030.	4.0	90
12	MMS observations of whistler waves in electron diffusion region. Geophysical Research Letters, 2017, 44, 3954-3962.	4.0	89
13	Electromagnetic energy conversion at dipolarization fronts: Multispacecraft results. Journal of Geophysical Research: Space Physics, 2015, 120, 4496-4502.	2.4	86
14	Magnetospheric Multiscale Observations of Electron Vortex Magnetic Hole in the Turbulent Magnetosheath Plasma. Astrophysical Journal Letters, 2017, 836, L27.	8.3	85
15	Super-efficient Electron Acceleration by an Isolated Magnetic Reconnection. Astrophysical Journal Letters, 2019, 870, L22.	8.3	83
16	Magnetotail dipolarization fronts and particle acceleration: A review. Science China Earth Sciences, 2020, 63, 235-256.	5.2	79
17	Observations of turbulence within reconnection jet in the presence of guide field. Geophysical Research Letters, 2012, 39, .	4.0	78
18	Suprathermal particle energization in dipolarization fronts: Particleâ€inâ€cell simulations. Journal of Geophysical Research: Space Physics, 2016, 121, 9483-9500.	2.4	77

#	Article	IF	CITATIONS
19	Electronâ€5cale Measurements of Dipolarization Front. Geophysical Research Letters, 2018, 45, 4628-4638.	4.0	77
20	Electron Jet Detected by MMS at Dipolarization Front. Geophysical Research Letters, 2018, 45, 556-564.	4.0	75
21	Chorus intensification in response to interplanetary shock. Journal of Geophysical Research, 2012, 117,	3.3	74
22	KINETIC TURBULENCE IN THE TERRESTRIAL MAGNETOSHEATH: <i>CLUSTER</i> OBSERVATIONS. Astrophysical Journal Letters, 2014, 789, L28.	8.3	74
23	Dipolarization fronts as earthward propagating flux ropes: A threeâ€dimensional global hybrid simulation. Journal of Geophysical Research: Space Physics, 2015, 120, 6286-6300.	2.4	70
24	Identifying magnetic reconnection events using the FOTE method. Journal of Geophysical Research: Space Physics, 2016, 121, 1263-1272.	2.4	69
25	Explaining the rollingâ€pin distribution of suprathermal electrons behind dipolarization fronts. Geophysical Research Letters, 2017, 44, 6492-6499.	4.0	68
26	First observation of risingâ€ŧone magnetosonic waves. Geophysical Research Letters, 2014, 41, 7419-7426.	4.0	66
27	A statistical study of kineticâ€size magnetic holes in turbulent magnetosheath: MMS observations. Journal of Geophysical Research: Space Physics, 2017, 122, 8577-8588.	2.4	64
28	Electron Acceleration by Dipolarization Fronts and Magnetic Reconnection: A Quantitative Comparison. Astrophysical Journal, 2018, 853, 11.	4.5	59
29	Cluster observations of simultaneous resonant interactions of ULF waves with energetic electrons and thermal ion species in the inner magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	58
30	Two types of whistler waves in the hall reconnection region. Journal of Geophysical Research: Space Physics, 2016, 121, 6639-6646.	2.4	57
31	Electron loss and acceleration during storm time: The contribution of wave-particle interaction, radial diffusion, and transport processes. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	56
32	MMS observations of ionâ€scale magnetic island in the magnetosheath turbulent plasma. Geophysical Research Letters, 2016, 43, 7850-7858.	4.0	53
33	Whistler mode waves at magnetotail dipolarization fronts. Journal of Geophysical Research: Space Physics, 2014, 119, 2605-2611.	2.4	51
34	Dynamic plasmapause model based on THEMIS measurements. Journal of Geophysical Research: Space Physics, 2015, 120, 10,543.	2.4	50
35	Broadband highâ€frequency waves detected at dipolarization fronts. Journal of Geophysical Research: Space Physics, 2017, 122, 4299-4307.	2.4	49
36	Waves in Kinetic‧cale Magnetic Dips: MMS Observations in the Magnetosheath. Geophysical Research Letters, 2019, 46, 523-533.	4.0	49

#	Article	IF	CITATIONS
37	Electron Distribution Functions Around a Reconnection Xâ€Line Resolved by the FOTE Method. Geophysical Research Letters, 2019, 46, 1195-1204.	4.0	47
38	Observations of Whistler Waves Correlated with Electron-scale Coherent Structures in the Magnetosheath Turbulent Plasma. Astrophysical Journal, 2018, 861, 29.	4.5	46
39	Energy Range of Electron Rolling Pin Distribution Behind Dipolarization Front. Geophysical Research Letters, 2019, 46, 2390-2398.	4.0	46
40	Suprathermal electron acceleration in the nearâ€Earth flow rebounce region. Journal of Geophysical Research: Space Physics, 2017, 122, 594-604.	2.4	45
41	Evidence of Magnetic Nulls in Electron Diffusion Region. Geophysical Research Letters, 2019, 46, 48-54.	4.0	45
42	A direct examination of the dynamics of dipolarization fronts using MMS. Journal of Geophysical Research: Space Physics, 2017, 122, 4335-4347.	2.4	44
43	The occurrence and wave properties of EMIC waves observed by the Magnetospheric Multiscale (MMS) mission. Journal of Geophysical Research: Space Physics, 2017, 122, 8228-8240.	2.4	44
44	Observations of the Electron Jet Generated by Secondary Reconnection in the Terrestrial Magnetotail. Astrophysical Journal, 2018, 862, 144.	4.5	43
45	Ionâ€Beamâ€Driven Intense Electrostatic Solitary Waves in Reconnection Jet. Geophysical Research Letters, 2019, 46, 12702-12710.	4.0	43
46	Rapid Pitch Angle Evolution of Suprathermal Electrons Behind Dipolarization Fronts. Geophysical Research Letters, 2017, 44, 10,116.	4.0	42
47	The role of ULF waves interacting with oxygen ions at the outer ring current during storm times. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	41
48	Formation of dipolarization fronts after current sheet thinning. Physics of Plasmas, 2018, 25, .	1.9	41
49	Evidence of Electron Acceleration at a Reconnecting Magnetopause. Geophysical Research Letters, 2019, 46, 5645-5652.	4.0	41
50	A physical explanation for the magnetic decrease ahead of dipolarization fronts. Annales Geophysicae, 2015, 33, 1301-1309.	1.6	40
51	Quadrupolar pattern of the asymmetric guideâ€field reconnection. Journal of Geophysical Research: Space Physics, 2017, 122, 6349-6356.	2.4	40
52	A New Theory for Energetic Electron Generation Behind Dipolarization Front. Geophysical Research Letters, 2020, 47, e2019GL086790.	4.0	38
53	In Situ Observation of Magnetic Reconnection Between an Earthward Propagating Flux Rope and the Geomagnetic Field. Geophysical Research Letters, 2018, 45, 8729-8737.	4.0	37
54	Slow magnetosonic waves detected in reconnection diffusion region in the Earth's magnetotail. Journal of Geophysical Research: Space Physics, 2013, 118, 1659-1666.	2.4	35

#	Article	IF	CITATIONS
55	The effects of bursty bulk flows on globalâ€scale current systems. Journal of Geophysical Research: Space Physics, 2017, 122, 6139-6149.	2.4	35
56	Electronâ€Driven Dissipation in a Tailward Flow Burst. Geophysical Research Letters, 2019, 46, 5698-5706.	4.0	35
57	IMAGE and DMSP observations of a density trough inside the plasmasphere. Journal of Geophysical Research, 2010, 115, .	3.3	34
58	Anchor Point of Electron Acceleration around Dipolarization Fronts in Space Plasmas. Astrophysical Journal Letters, 2019, 873, L2.	8.3	34
59	Electric fields associated with dipolarization fronts. Journal of Geophysical Research: Space Physics, 2014, 119, 5272-5278.	2.4	33
60	Electron Dynamics in Magnetosheath Mirrorâ€Mode Structures. Journal of Geophysical Research: Space Physics, 2018, 123, 5561-5570.	2.4	33
61	The nightsideâ€toâ€dayside evolution of the inner magnetosphere: Imager for Magnetopauseâ€toâ€Aurora Global Exploration Radio Plasma Imager observations. Journal of Geophysical Research, 2010, 115, .	3.3	32
62	Electric structure of dipolarization fronts associated with interchange instability in the magnetotail. Journal of Geophysical Research: Space Physics, 2013, 118, 6019-6025.	2.4	32
63	Observations of discrete magnetosonic waves off the magnetic equator. Geophysical Research Letters, 2015, 42, 9694-9701.	4.0	32
64	Simultaneous fieldâ€aligned currents at Swarm and Cluster satellites. Geophysical Research Letters, 2015, 42, 3683-3691.	4.0	32
65	Parallel Electron Heating by Tangential Discontinuity in the Turbulent Magnetosheath. Astrophysical Journal Letters, 2019, 877, L16.	8.3	32
66	First Measurements of Electrons and Waves inside an Electrostatic Solitary Wave. Physical Review Letters, 2020, 124, 095101.	7.8	32
67	Observations of Flux Ropes With Strong Energy Dissipation in the Magnetotail. Geophysical Research Letters, 2019, 46, 580-589.	4.0	31
68	Electron Heating by Debye-Scale Turbulence in Guide-Field Reconnection. Physical Review Letters, 2020, 124, 045101.	7.8	31
69	Kinetic simulations of secondary reconnection in the reconnection jet. Journal of Geophysical Research: Space Physics, 2015, 120, 6188-6198.	2.4	30
70	In situ observations of flux rope at the separatrix region of magnetic reconnection. Journal of Geophysical Research: Space Physics, 2016, 121, 205-213.	2.4	30
71	Occurrence rate of whistler waves in the magnetotail reconnection region. Journal of Geophysical Research: Space Physics, 2017, 122, 7188-7196.	2.4	30
72	Multispacecraft current estimates at swarm. Journal of Geophysical Research: Space Physics, 2015, 120, 8307-8316.	2.4	29

#	Article	IF	CITATIONS
73	Magnetic Nulls in the Reconnection Driven by Turbulence. Astrophysical Journal, 2018, 852, 17.	4.5	29
74	Ionospheric Cold Ions Detected by MMS Behind Dipolarization Fronts. Geophysical Research Letters, 2019, 46, 7883-7892.	4.0	29
75	The role of electrons during chorus intensification: Energy source and energy loss. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 80, 37-47.	1.6	28
76	Observations of large-amplitude electromagnetic waves and associated wave–particle interactions at the dipolarization front in the Earth's magnetotail: A case study. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 129, 119-127.	1.6	28
77	Direct evidence of secondary reconnection inside filamentary currents of magnetic flux ropes during magnetic reconnection. Nature Communications, 2020, 11, 3964.	12.8	27
78	Pitch angle evolutions of oxygen ions driven by storm time ULF poloidal standing waves. Journal of Geophysical Research, 2011, 116, .	3.3	26
79	DEMETER observations of high-latitude chorus waves penetrating the plasmasphere during a geomagnetic storm. Geophysical Research Letters, 2013, 40, 5827-5832.	4.0	26
80	Enhancement of oxygen in the magnetic island associated with dipolarization fronts. Journal of Geophysical Research: Space Physics, 2017, 122, 185-193.	2.4	26
81	Structure and evolution of flux transfer events near dayside magnetic reconnection dissipation region: MMS observations. Geophysical Research Letters, 2017, 44, 5951-5959.	4.0	26
82	SOTE: A Nonlinear Method for Magnetic Topology Reconstruction in Space Plasmas. Astrophysical Journal, Supplement Series, 2019, 244, 31.	7.7	26
83	Magnetic Reconnection Inside a Flux Rope Induced by Kelvinâ€Helmholtz Vortices. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027665.	2.4	26
84	Compressible turbulence with slowâ€mode waves observed in the bursty bulk flow of plasma sheet. Geophysical Research Letters, 2016, 43, 1854-1861.	4.0	25
85	Observation of Threeâ€Dimensional Magnetic Reconnection in the Terrestrial Magnetotail. Journal of Geophysical Research: Space Physics, 2017, 122, 9513-9520.	2.4	25
86	Detection of Magnetic Nulls around Reconnection Fronts. Astrophysical Journal, 2018, 860, 128.	4.5	25
87	The evolution of flux pileup regions in the plasma sheet: Cluster observations. Journal of Geophysical Research: Space Physics, 2013, 118, 6279-6290.	2.4	24
88	Evidence of Magnetic Nulls in the Reconnection at Bow Shock. Geophysical Research Letters, 2019, 46, 10209-10218.	4.0	24
89	Dawn-dusk scale of dipolarization front in the Earth's magnetotail: multi-cases study. Astrophysics and Space Science, 2015, 357, 1.	1.4	23
90	Smallâ€ S cale Flux Transfer Events Formed in the Reconnection Exhaust Region Between Two X Lines. Journal of Geophysical Research: Space Physics, 2018, 123, 8473-8488.	2.4	23

#	Article	IF	CITATIONS
91	Electron Vorticity Indicative of the Electron Diffusion Region of Magnetic Reconnection. Geophysical Research Letters, 2019, 46, 6287-6296.	4.0	23
92	Direct evidence of solar wind deceleration in the foreshock of the Earth. Journal of Geophysical Research, 2009, 114, .	3.3	22
93	Rapid loss of the plasma sheet energetic electrons associated with the growth of whistler mode waves inside the bursty bulk flows. Journal of Geophysical Research: Space Physics, 2013, 118, 7200-7210.	2.4	22
94	Storm time evolution of ELF/VLF waves observed by DEMETER satellite. Journal of Geophysical Research: Space Physics, 2014, 119, 2612-2622.	2.4	21
95	Whistler mode wave generation at the edges of a magnetic dip. Journal of Geophysical Research: Space Physics, 2015, 120, 2469-2476.	2.4	21
96	MMS Observations of Kinetic-size Magnetic Holes in the Terrestrial Magnetotail Plasma Sheet. Astrophysical Journal, 2019, 875, 113.	4.5	21
97	Reconstructing the flux-rope topology using the FOTE method. Science China Technological Sciences, 2019, 62, 144-150.	4.0	21
98	First Topology of Electron cale Magnetic Hole. Geophysical Research Letters, 2020, 47, e2020GL088374.	4.0	21
99	Electron Pitchâ€Angle Distribution in Earth's Magnetotail: Pancake, Cigar, Isotropy, Butterfly, and Rollingâ€Pin. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027777.	2.4	21
100	On the Origin of Ionospheric Hiss: A Conjugate Observation. Journal of Geophysical Research: Space Physics, 2017, 122, 11,784.	2.4	20
101	Kinetics of Magnetic Hole Behind Dipolarization Front. Geophysical Research Letters, 2021, 48, e2021GL093174.	4.0	20
102	Energetic Electron Acceleration in Unconfined Reconnection Jets. Astrophysical Journal Letters, 2019, 881, L8.	8.3	19
103	Cluster and MMS Simultaneous Observations of Magnetosheath High Speed Jets and Their Impact on the Magnetopause. Frontiers in Astronomy and Space Sciences, 2020, 6, .	2.8	18
104	AME: A Cross-Scale Constellation of CubeSats to Explore Magnetic Reconnection in the Solar–Terrestrial Relation. Frontiers in Physics, 2020, 8, .	2.1	18
105	Electron cale Measurements of Antidipolarization Front. Geophysical Research Letters, 2021, 48, e2020GL092232.	4.0	18
106	Monitoring the Spatio-temporal Evolution of a Reconnection X-line in Space. Astrophysical Journal Letters, 2020, 899, L34.	8.3	18
107	Curlometer Technique and Applications. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029538.	2.4	18
108	Periodical Dipolarization Processes in Earth's Magnetotail. Geophysical Research Letters, 2019, 46, 13640-13648.	4.0	17

#	Article	IF	CITATIONS
109	Kinetic-scale Flux Rope in the Magnetosheath Boundary Layer. Astrophysical Journal, 2020, 897, 137.	4.5	16
110	First Observation of Magnetic Flux Rope Inside Electron Diffusion Region. Geophysical Research Letters, 2021, 48, e2020GL089722.	4.0	15
111	ULF Waves Associated with Solar Wind Deceleration in the Earth's Foreshock. Chinese Physics Letters, 2009, 26, 119402.	3.3	14
112	Different types of whistler mode chorus in the equatorial source region. Geophysical Research Letters, 2015, 42, 8271-8279.	4.0	14
113	Observations of Short-period Current Sheet Flapping Events in the Earth's Magnetotail. Astrophysical Journal Letters, 2019, 874, L18.	8.3	14
114	Characteristics of Interplanetary Discontinuities in the Inner Heliosphere Revealed by Parker Solar Probe. Astrophysical Journal, 2021, 916, 65.	4.5	14
115	Particle energization in space plasmas: towards a multi-point, multi-scale plasma observatory. Experimental Astronomy, 2022, 54, 427-471.	3.7	14
116	Formation of Rollingâ€Pin Distribution of Suprathermal Electrons Behind Dipolarization Fronts. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	14
117	Observation of directional change of core field inside flux ropes within one reconnection diffusion region in the Earth's magnetotail. Science Bulletin, 2014, 59, 4797-4803.	1.7	13
118	Local time distributions of repetition periods for rising tone lower band chorus waves in the magnetosphere. Geophysical Research Letters, 2015, 42, 8294-8301.	4.0	13
119	Statistical properties of kinetic-scale magnetic holes in terrestrial space. Earth and Planetary Physics, 2021, 5, 63-72.	1.1	13
120	Cross-scale Dynamics Driven by Plasma Jet Braking in Space. Astrophysical Journal, 2022, 926, 198.	4.5	13
121	Turbulence in the Earth's cusp region: The <i>k</i> â€filtering analysis. Journal of Geophysical Research: Space Physics, 2014, 119, 9527-9542.	2.4	12
122	Extending the FOTE Method to Three-dimensional Plasma Flow Fields. Astrophysical Journal, Supplement Series, 2020, 249, 10.	7.7	12
123	An Unexpected Whistler Wave Generation Around Dipolarization Front. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028957.	2.4	12
124	Betatron Cooling of Electrons in Martian Magnetotail. Geophysical Research Letters, 2021, 48, e2021GL093826.	4.0	12
125	Electron Thermalization and Electrostatic Turbulence Caused by Flow Reversal in Dipolarizing Flux Tubes. Astrophysical Journal, 2022, 926, 22.	4.5	12
126	In situ spacecraft observations of a structured electron diffusion region during magnetopause reconnection. Physical Review E, 2019, 99, 043204.	2.1	11

#	Article	IF	CITATIONS
127	Disturbance of the Front Region of Magnetic Reconnection Outflow Jets due to the Lower-Hybrid Drift Instability. Physical Review Letters, 2019, 123, 235101.	7.8	11
128	The Effect of Current on Magnetic Null Topology during Turbulent Reconnection. Astrophysical Journal, 2022, 927, 119.	4.5	11
129	Generation mechanism of the whistler-mode waves in the plasma sheet prior to magnetic reconnection. Advances in Space Research, 2013, 52, 205-210.	2.6	10
130	Energy Flux Densities at Dipolarization Fronts. Geophysical Research Letters, 2021, 48, e2021GL094932.	4.0	10
131	Observational Evidence of Magnetic Reconnection in the Terrestrial Foreshock Region. Astrophysical Journal, 2021, 922, 56.	4.5	10
132	Broadband Electrostatic Waves Behind Dipolarization Front: Observations and Analyses. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	10
133	MHD and kinetic analysis of flow bursts in the Earth's plasma sheet. Science China Technological Sciences, 2014, 57, 55-66.	4.0	9
134	Electron Rolling-pin Distribution Inside Magnetic Hole. Astrophysical Journal, 2022, 926, 199.	4.5	8
135	Categorizing MHD Discontinuities in the Inner Heliosphere by Utilizing the PSP Mission. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	8
136	Low-frequency Whistler Waves Modulate Electrons and Generate Higher-frequency Whistler Waves in the Solar Wind. Astrophysical Journal, 2021, 923, 216.	4.5	7
137	First Observation of Lower Hybrid Drift Waves at the Edge of the Current Sheet in the Martian Magnetotail. Astrophysical Journal, 2022, 933, 128.	4.5	7
138	Statistical Correlation Analysis of Fieldâ€Aligned Currents Measured by Swarm. Journal of Geophysical Research: Space Physics, 2018, 123, 8170-8184.	2.4	6
139	Kinetic Interaction of Cold and Hot Protons With an Oblique EMIC Wave Near the Dayside Reconnecting Magnetopause. Geophysical Research Letters, 2021, 48, e2021GL092376.	4.0	6
140	Microscale Processes Determining Macroscale Evolution of Magnetic Flux Tubes along Earth's Magnetopause. Astrophysical Journal, 2021, 914, 26.	4.5	6
141	Cluster Observations of Energetic Electron Acceleration Within Earthward Reconnection Jet and Associated Magnetic Flux Rope. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029545.	2.4	6
142	Electron Vorticity at Dipolarization Fronts. Astrophysical Journal, 2021, 911, 122.	4.5	5
143	Subion‣cale Flux Rope Nested Inside Ion‣cale Flux Rope in Earth's Magnetotail. Geophysical Research Letters, 2021, 48, e2021CL096169.	4.0	5
144	Fine Structures of the Electron Current Sheet in Magnetotail Guideâ€Field Reconnection. Geophysical Research Letters, 2022, 49, .	4.0	5

#	Article	IF	CITATIONS
145	A new method to identify flux ropes in space plasmas. Annales Geophysicae, 2018, 36, 1275-1283.	1.6	4
146	MMS Observation on the Crossâ€Tail Current Sheet Rollâ€up at the Dipolarization Front. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028796.	2.4	4
147	Magnetic Discontinuities in the Solar Wind and Magnetosheath: Magnetospheric Multiscale Mission (MMS) Observations. Astrophysical Journal, 2022, 930, 63.	4.5	4
148	Magnetospheric Multiscale Mission Observations of Lower-hybrid Drift Waves in Terrestrial Magnetotail Reconnection with Moderate Guide Field and Asymmetric Plasma Density. Astrophysical Journal, 2022, 933, 208.	4.5	4
149	Evolution of Kelvin-Helmholtz instability at Venus in the presence of the parallel magnetic field. Physics of Plasmas, 2015, 22, .	1.9	3
150	Preliminary empirical model of inner boundary of ion plasma sheet. Advances in Space Research, 2015, 56, 1194-1199.	2.6	3
151	Observation of Nonuniform Energy Dissipation in the Electron Diffusion Region of Magnetopause Reconnection. Geophysical Research Letters, 2021, 48, e2020GL091928.	4.0	3
152	A comparison of methods for finding magnetic nulls in simulations and in situ observations of space plasmas. Astronomy and Astrophysics, 2020, 644, A150.	5.1	2
153	Is the Near-Earth Current Sheet Prior to Reconnection Unstable to Tearing Mode?. Chinese Physics Letters, 2010, 27, 029401.	3.3	1
154	Chorus variation during the compression of magnetosphere. , 2011, , .		1
155	Discrete magnetosonic waves as an evidence of nonlinear wave-particle interaction. , 2014, , .		1
156	Observations of Whistler Waves in the Magnetic Reconnection Diffusion Region. , 2018, , .		1
157	Solar wind ―magnetosphere coupling during radial interplanetary magnetic field conditions: simultaneous multiâ€point observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029506.	2.4	1
158	Multi-spacecraft detection of kinetic Alfvén waves in the turbulent cusp region. , 2014, , .		0
159	Evolution of Kelvin-Helmholtz instability at Venus in the presence of the parallel magnetic field. , 2014, , .		0
160	Solar wind compressible turbulence near proton scales: Cluster observations. AIP Conference Proceedings, 2016, , .	0.4	0