Elizabeth Cosgriff-Hernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4646382/publications.pdf

Version: 2024-02-01

83 papers

5,174 citations

94269 37 h-index 70 g-index

85 all docs 85 docs citations

85 times ranked 7432 citing authors

#	Article	IF	Citations
1	Anisotropic elastic behavior of a hydrogel-coated electrospun polyurethane: Suitability for heart valve leaflets. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104877.	1.5	14
2	PoreScript: Semi-automated pore size algorithm for scaffold characterization. Bioactive Materials, 2022, 13, 1-8.	8.6	6
3	Prokaryotic Collagen-Like Proteins as Novel Biomaterials. Frontiers in Bioengineering and Biotechnology, 2022, 10, 840939.	2.0	6
4	Model-Directed Design of Tissue Engineering Scaffolds. ACS Biomaterials Science and Engineering, 2022, 8, 4622-4624.	2.6	1
5	PO-709-08 CONDUCTIVE HYDROGELS FOR RF ENERGY DELIVERY: A NOVEL APPLICATION. Heart Rhythm, 2022, 19, S472.	0.3	0
6	Quantitative confocal microscopy and calibration for measuring differences in cyclic-di-GMP signalling by bacteria on biomedical hydrogels. Royal Society Open Science, 2021, 8, 201453.	1.1	3
7	Precise control of synthetic hydrogel network structure via linear, independent synthesis-swelling relationships. Science Advances, 2021, 7, .	4.7	54
8	Fund Black scientists. Cell, 2021, 184, 561-565.	13.5	107
9	Comparative analysis of fiber alignment methods in electrospinning. Matter, 2021, 4, 821-844.	5.0	67
10	Animal Models and Alternatives in Vaginal Research: a Comparative Review. Reproductive Sciences, 2021, 28, 1759-1773.	1.1	17
11	Comparative efficacy of resorbable fiber wraps loaded with gentamicin sulfate or gallium maltolate in the treatment of osteomyelitis. Journal of Biomedical Materials Research - Part A, 2021, 109, 2255-2268.	2.1	5
12	Reactive Surfactants for Achieving Openâ€Cell PolyHIPE Foams from Pickering Emulsions. Macromolecular Materials and Engineering, 2021, 306, 2000825.	1.7	15
13	Engineering Toolbox for Systematic Design of PolyHIPE Architecture. Polymers, 2021, 13, 1479.	2.0	7
14	Reconstituting electrical conduction in soft tissue: the path to replace the ablationist. Europace, 2021, 23, 1892-1902.	0.7	0
15	A Prevascularized Polyurethaneâ€Reinforced Fibrin Patch Improves Regenerative Remodeling in a Rat Right Ventricle Replacement Model. Advanced Healthcare Materials, 2021, 10, e2101018.	3.9	4
16	In Vivo Characterization of Poly(ethylene glycol) Hydrogels with Thio- \hat{l}^2 Esters. Annals of Biomedical Engineering, 2020, 48, 953-967.	1.3	9
17	Evaluation of a polyurethane-reinforced hydrogel patch in a rat right ventricle wall replacement model. Acta Biomaterialia, 2020, 101, 206-218.	4.1	18
18	Fiber engraving for bioink bioprinting within 3D printed tissue engineering scaffolds. Bioprinting, 2020, 18, e00076.	2.9	26

#	Article	IF	Citations
19	Methacrylate-based polymer foams with controllable connectivity, pore shape, pore size and polydispersity. Physical Chemistry Chemical Physics, 2020, 22, 155-168.	1.3	13
20	In vivo performance of a bilayer wrap to prevent abdominal adhesions. Acta Biomaterialia, 2020, 115 , $116-126$.	4.1	7
21	Review of Integrinâ€Targeting Biomaterials in Tissue Engineering. Advanced Healthcare Materials, 2020, 9, e2000795.	3.9	54
22	Poly(ethylene glycol)-Based Coatings for Bioprosthetic Valve Tissues: Toward Restoration of Physiological Behavior. ACS Applied Bio Materials, 2020, 3, 8352-8360.	2.3	6
23	Gelatin Matrices for Growth Factor Sequestration. Trends in Biotechnology, 2020, 38, 546-557.	4.9	51
24	Bioactive hydrogel coatings of complex substrates using diffusion-mediated redox initiation. Journal of Materials Chemistry B, 2020, 8, 4289-4298.	2.9	12
25	Assaying How Phagocytic Success Depends on the Elasticity of a Large Target Structure. Biophysical Journal, 2019, 117, 1496-1507.	0.2	9
26	Porous PolyHIPE microspheres for protein delivery from an injectable bone graft. Acta Biomaterialia, 2019, 93, 169-179.	4.1	33
27	Bactericidal activity of 3D-printed hydrogel dressing loaded with gallium maltolate. APL Bioengineering, 2019, 3, 026102.	3.3	26
28	Elucidating the role of graft compliance mismatch on intimal hyperplasia using an ex vivo organ culture model. Acta Biomaterialia, 2019, 89, 84-94.	4.1	53
29	Fabrication and Characterization of Electrospun Decellularized Muscle-Derived Scaffolds. Tissue Engineering - Part C: Methods, 2019, 25, 276-287.	1.1	46
30	Emerging technologies in pediatric gynecology: new paradigms in women's health care. Current Opinion in Obstetrics and Gynecology, 2019, 31, 309-316.	0.9	2
31	Hydrocolloid Inks for 3D Printing of Porous Hydrogels. Advanced Materials Technologies, 2019, 4, 1800343.	3.0	19
32	Elucidation of Endothelial Cell Hemostatic Regulation with Integrin-Targeting Hydrogels. Annals of Biomedical Engineering, 2019, 47, 866-877.	1.3	4
33	A Review of Integrin-Mediated Endothelial Cell Phenotype in the Design of Cardiovascular Devices. Annals of Biomedical Engineering, 2019, 47, 366-380.	1.3	32
34	Hemostatic and Absorbent PolyHIPE–Kaolin Composites for 3D Printable Wound Dressing Materials. Macromolecular Bioscience, 2018, 18, e1700414.	2.1	45
35	Introduction of sacrificial bonds to hydrogels to increase defect tolerance during suturing of multilayer vascular grafts. Acta Biomaterialia, 2018, 69, 313-322.	4.1	15
36	Winner of the society for biomaterials student award in the Ph.D. category for the annual meeting of the society for biomaterials, april 11–14, 2018, Atlanta, GA: Development of a bimodal, ⟨i⟩in situ⟨ i⟩ crosslinking method to achieve multifactor release from electrospun gelatin. Journal of Biomedical Materials Research - Part A, 2018, 106, 1155-1164.	2.1	6

#	Article	IF	Citations
37	Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels. Biomaterials, 2018, 185, 194-204.	5.7	60
38	Prevention of Oxygen Inhibition of PolyHIPE Radical Polymerization Using a Thiol-Based Cross-Linker. ACS Biomaterials Science and Engineering, 2017, 3, 409-419.	2.6	30
39	Fabrication of biomimetic bone grafts with multi-material 3D printing. Biofabrication, 2017, 9, 025020.	3.7	64
40	Recent advancements in electrospinning design for tissue engineering applications: A review. Journal of Biomedical Materials Research - Part A, 2017, 105, 2892-2905.	2.1	180
41	Fabrication of macromolecular gradients in aligned fiber scaffolds using a combination of in-line blending and air-gap electrospinning. Acta Biomaterialia, 2017, 56, 118-128.	4.1	44
42	Synthesis and Characterization of Plug-and-Play Polyurethane Urea Elastomers as Biodegradable Matrixes for Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2017, 3, 3493-3502.	2.6	31
43	A shape memory foam composite with enhanced fluid uptake and bactericidal properties as a hemostatic agent. Acta Biomaterialia, 2017, 47, 91-99.	4.1	133
44	Emulsion Inks for 3D Printing of High Porosity Materials. Macromolecular Rapid Communications, 2016, 37, 1369-1374.	2.0	77
45	Comparison of clinical explants and accelerated hydrolytic aging to improve biostability assessment of siliconeâ€based polyurethanes. Journal of Biomedical Materials Research - Part A, 2016, 104, 1805-1816.	2.1	21
46	Hybrid polyurea elastomers with enzymatic degradation and tunable mechanical properties. Journal of Tissue Engineering, 2016, 7, 204173141667936.	2.3	14
47	Electrospun Polyurethane and Hydrogel Composite Scaffolds as Biomechanical Mimics for Aortic Valve Tissue Engineering. ACS Biomaterials Science and Engineering, 2016, 2, 1546-1558.	2.6	67
48	A Review of Three-Dimensional Printing in Tissue Engineering. Tissue Engineering - Part B: Reviews, 2016, 22, 298-310.	2.5	280
49	Osteoinductive PolyHIPE Foams as Injectable Bone Grafts. Tissue Engineering - Part A, 2016, 22, 403-414.	1.6	34
50	Limitations of predicting <i>in vivo</i> biostability of multiphase polyurethane elastomers using temperature-accelerated degradation testing., 2015, 103, 159-168.		38
51	Bioactive Nanoengineered Hydrogels for Bone Tissue Engineering: A Growth-Factor-Free Approach. ACS Nano, 2015, 9, 3109-3118.	7.3	547
52	In situ crosslinking of electrospun gelatin for improved fiber morphology retention and tunable degradation. Journal of Materials Chemistry B, 2015, 3, 7930-7938.	2.9	66
53	Chronic Wound Dressings Based on Collagen-Mimetic Proteins. Advances in Wound Care, 2015, 4, 444-456.	2.6	36
54	Electrospun vascular grafts with improved compliance matching to native vessels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 313-323.	1.6	68

#	Article	IF	CITATIONS
55	Endothelial Cell Response to Chemical, Biological, and Physical Cues in Bioactive Hydrogels. Tissue Engineering - Part A, 2014, 20, 3130-3141.	1.6	23
56	Drying and storage effects on poly(ethylene glycol) hydrogel mechanical properties and bioactivity. Journal of Biomedical Materials Research - Part A, 2014, 102, 3066-3076.	2.1	27
57	High Compliance Vascular Grafts Based on Semi-Interpenetrating Networks. Macromolecular Materials and Engineering, 2014, 299, 1455-1464.	1.7	4
58	Injectable polyMIPE scaffolds for soft tissue regeneration. Polymer, 2014, 55, 426-434.	1.8	31
59	Solventâ€Free Fabrication of polyHIPE Microspheres for Controlled Release of Growth Factors. Macromolecular Rapid Communications, 2014, 35, 1301-1305.	2.0	34
60	Low density biodegradable shape memory polyurethane foams for embolic biomedical applications. Acta Biomaterialia, 2014, 10, 67-76.	4.1	155
61	Achieving Interconnected Pore Architecture in Injectable PolyHIPEs for Bone Tissue Engineering. Tissue Engineering - Part A, 2014, 20, 1103-1112.	1.6	72
62	Characterization of a resorbable poly(ester urethane) with biodegradable hard segments. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 535-554.	1.9	16
63	Injectable Polymerized High Internal Phase Emulsions with Rapid in Situ Curing. Biomacromolecules, 2014, 15, 2870-2878.	2.6	53
64	Comparative analysis of <i>in vitro</i> oxidative degradation of poly(carbonate urethanes) for biostability screening. Journal of Biomedical Materials Research - Part A, 2014, 102, 3649-3665.	2.1	51
65	Determination of the <i>in vivo </i> degradation mechanism of PEGDA hydrogels. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	134
66	Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology. Tissue Engineering - Part C: Methods, 2013, 19, 810-819.	1.1	317
67	Bioactive Hydrogels with Enhanced Initial and Sustained Cell Interactions. Biomacromolecules, 2013, 14, 2225-2233.	2.6	30
68	Development of a Biostable Replacement for PEGDA Hydrogels. Biomacromolecules, 2012, 13, 779-786.	2.6	88
69	Multilayer vascular grafts based on collagen-mimetic proteins. Acta Biomaterialia, 2012, 8, 1010-1021.	4.1	134
70	Emulsion Templating. , 2012, , 665-678.		0
71	Injectable PolyHIPEs as High-Porosity Bone Grafts. Biomacromolecules, 2011, 12, 3621-3628.	2.6	128
72	Synthesis of Collagenaseâ€Sensitive Polyureas for Ligament Tissue Engineering. Macromolecular Bioscience, 2011, 11, 1020-1030.	2.1	14

#	Article	IF	CITATIONS
73	Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size. Journal of Biomedical Materials Research - Part A, 2011, 98A, 268-273.	2.1	69
74	Bioactive hydrogels based on Designer Collagens. Acta Biomaterialia, 2010, 6, 3969-3977.	4.1	89
75	Micropatterning of Electrospun Polyurethane Fibers Through Control of Surface Topography. Macromolecular Materials and Engineering, 2010, 295, 990-994.	1.7	23
76	The Role of Mechanical Loading in Ligament Tissue Engineering. Tissue Engineering - Part B: Reviews, 2009, 15, 467-475.	2.5	70
77	New Biomaterials as Scaffolds for Tissue Engineering. Pharmaceutical Research, 2008, 25, 2345-2347.	1.7	20
78	Biodegradable Fumarate-Based PolyHIPEs as Tissue Engineering Scaffolds. Biomacromolecules, 2007, 8, 3806-3814.	2.6	142
79	Nanobiomaterial applications in orthopedics. Journal of Orthopaedic Research, 2007, 25, 11-22.	1.2	316
80	Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase. Biomaterials, 2006, 27, 3920-3926.	5.7	112
81	Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers. Polymer, 2005, 46, 11744-11754.	1.8	145
82	In vivo biocompatibility and biodegradation of poly(ethylene carbonate). Journal of Controlled Release, 2003, 93, 259-270.	4.8	74
83	Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10287-10292.	3.3	216