Kun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4646371/publications.pdf Version: 2024-02-01

KUN WANG

#	Article	IF	CITATIONS
1	Study on the structure and physicochemical properties of fenugreek galactomannan modified via octenyl succinic anhydride. International Journal of Biological Macromolecules, 2022, 214, 91-99.	3.6	9
2	Production of manno-oligosaccharide from Gleditsia microphylla galactomannan using acetic acid and ferrous chloride. Food Chemistry, 2021, 346, 128844.	4.2	8
3	A review on preparations, properties, and applications of cis-ortho-hydroxyl polysaccharides hydrogels crosslinked with borax. International Journal of Biological Macromolecules, 2021, 182, 1179-1191.	3.6	27
4	Physicochemical Variation of the Main Components during Wild Pretreatment Process Based on the Concept of the Whole Utilization of Bamboo. Energies, 2021, 14, 6857.	1.6	2
5	Physicochemical characterization of Gleditsia triacanthos galactomannan during deposition and maturation. International Journal of Biological Macromolecules, 2020, 144, 821-828.	3.6	15
6	Borax crosslinked fenugreek galactomannan hydrogel as potential water-retaining agent in agriculture. Carbohydrate Polymers, 2020, 236, 116100.	5.1	65
7	Hygroscopicity of Waterlogged Archaeological Wood from Xiaobaijiao No.1 Shipwreck Related to Its Deterioration State. Polymers, 2020, 12, 834.	2.0	19
8	Preparation and physical/chemical modification of galactomannan film for food packaging. International Journal of Biological Macromolecules, 2019, 137, 1060-1067.	3.6	31
9	Solvability and thermal response of cellulose with different crystal configurations. Frontiers of Engineering Management, 2019, 6, 62-69.	3.3	4
10	Nanomechanical and Topochemical Changes in Elm Wood from Ancient Timber Constructions in Relation to Natural Aging. Materials, 2019, 12, 786.	1.3	17
11	Enhancement of bioethanol production from Moso bamboo pretreated with biodiesel crude glycerol: Substrate digestibility, cellulase absorption and fermentability. Bioresource Technology, 2019, 276, 300-309.	4.8	23
12	Inspired by efficient cellulose-dissolving system: Facile one-pot synthesis of biomass-based hydrothermal magnetic carbonaceous materials. Carbohydrate Polymers, 2017, 164, 127-135.	5.1	16
13	Physicochemical Characteristics of Gradual Fractionation Ingredients of Industrial Galactomannan Gums from Gleditsia microphylla and Cyamopsis tetragonoloba. BioResources, 2016, 11, .	0.5	3
14	Cellulose acetate fibers prepared from different raw materials with rapid synthesis method. Carbohydrate Polymers, 2016, 137, 685-692.	5.1	88
15	Regenerated Cellulose Fibers Prepared from Wheat Straw with Different Solvents. Macromolecular Materials and Engineering, 2015, 300, 793-801.	1.7	11
16	Effect of hemicellulose removal on the structural and mechanical properties of regenerated fibers from bamboo. Cellulose, 2015, 22, 63-72.	2.4	25
17	Highly Thermostable, Flexible, and Conductive Films Prepared from Cellulose, Graphite, and Polypyrrole Nanoparticles. ACS Applied Materials & amp; Interfaces, 2015, 7, 15641-15648.	4.0	90
18	Combined effects of raw materials and solvent systems on the preparation and properties of regenerated cellulose fibers. Carbohydrate Polymers, 2015, 128, 147-153.	5.1	43

Kun Wang

#	Article	IF	CITATIONS
19	Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution. Carbohydrate Polymers, 2015, 125, 85-91.	5.1	79
20	Regulating effect of hemicelluloses on the preparation and properties of composite Lyocell fibers. Cellulose, 2015, 22, 1505-1516.	2.4	10
21	The Synergic Relationship Between Xylan Removal and Enhanced Cellulose Digestibility for Bioethanol Production: Reactive Area, Crystallinity, and Inhibitation. Bioenergy Research, 2015, 8, 1847-1855.	2.2	12
22	Comparative characterization of degraded lignin polymer from the organosolv fractionation process with various catalysts and alcohols. Journal of Applied Polymer Science, 2014, 131, .	1.3	6
23	Structural evaluation and bioethanol production by simultaneous saccharification and fermentation with biodegraded triploid poplar. Biotechnology for Biofuels, 2013, 6, 42.	6.2	14
24	Influence of delignification efficiency with alkaline peroxide on the digestibility of furfural residues for bioethanol production. Bioresource Technology, 2013, 146, 208-214.	4.8	36
25	Correlation between hemicelluloses-removal-induced hydrophilicity variation and the bioconversion efficiency of lignocelluloses. Bioresource Technology, 2013, 147, 539-544.	4.8	23
26	Preparation, characterization of carboxylated bamboo fibers and their adsorption for lead(II) ions in aqueous solution. Cellulose, 2013, 20, 2091-2100.	2.4	25
27	Organosolv fractionation process with various catalysts for improving bioconversion of triploid poplar. Process Biochemistry, 2012, 47, 1503-1509.	1.8	27
28	Effects of Incubation Time on the Fractionation and Characterization of Lignin During Steam Explosion Pretreatment. Industrial & Engineering Chemistry Research, 2012, 51, 2704-2713.	1.8	19
29	H2SO4-Catalyzed Hydrothermal Pretreatment of Triploid Poplar to Enhance Enzymatic Hydrolysis. Industrial & Engineering Chemistry Research, 2012, 51, 11598-11604.	1.8	19
30	Structural Transformation of Miscanthus × giganteus Lignin Fractionated under Mild Formosolv, Basic Organosolv, and Cellulolytic Enzyme Conditions. Journal of Agricultural and Food Chemistry, 2012, 60, 144-152.	2.4	56
31	Structural transformation of hemicelluloses and lignin from triploid poplar during acid-pretreatment based biorefinery process. Bioresource Technology, 2012, 116, 99-106.	4.8	61
32	Structural comparison and enhanced enzymatic hydrolysis of the cellulosic preparation from Populus tomentosa Carr., by different cellulose-soluble solvent systems. Bioresource Technology, 2011, 102, 4524-4529.	4.8	44
33	Influence of steaming pressure on steam explosion pretreatment of Lespedeza stalks (<i>Lespedeza) Tj ETQq1 1617-1625.</i>	1 0.78431 1.3	4 rgBT /Over 1
34	Influence of Incubation Time on the Physicochemical Properties of the Isolated Hemicelluloses from Steam-Exploded Lespedeza Stalks. Industrial & Engineering Chemistry Research, 2010, 49, 8797-8804.	1.8	13
35	Molecular Characteristics of Kraft-AQ Pulping Lignin Fractionated by Sequential Organic Solvent Extraction. International Journal of Molecular Sciences, 2010, 11, 2988-3001.	1.8	101
36	Influence of steaming explosion time on the physic-chemical properties of cellulose from Lespedeza stalks (Lespedeza crytobotrya). Bioresource Technology, 2009, 100, 5288-5294.	4.8	71

#	Article	IF	CITATIONS
37	Structure, composition and enzymatic hydrolysis of steam-exploded lespedeza stalks. Forestry Studies in China, 2007, 9, 137-141.	0.4	4
38	Simultaneous saccharification and fermentation of steam-pretreated lespedeza stalks for the production of ethanol. Forestry Studies in China, 2006, 8, 30-33.	0.4	7