Johannes Lehmann

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4646259/johannes-lehmann-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

86 316 45,774 211 h-index g-index citations papers 7.96 52,419 337 7.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
316	Biochar-based fertilizer effects on crop productivity: a meta-analysis. <i>Plant and Soil</i> , 2022 , 472, 45	4.2	1
315	Soil organic carbon accrual due to more efficient microbial utilization of plant inputs at greater long-term soil moisture. <i>Geochimica Et Cosmochimica Acta</i> , 2022 , 327, 170-185	5.5	О
314	Susceptibility of new soil organic carbon to mineralization during dry-wet cycling in soils from contrasting ends of a precipitation gradient. <i>Soil Biology and Biochemistry</i> , 2022 , 169, 108681	7.5	1
313	Biochar in climate change mitigation. <i>Nature Geoscience</i> , 2021 , 14, 883-892	18.3	25
312	Greenhouse Gas Inventory Model for Biochar Additions to Soil. <i>Environmental Science &</i> Technology, 2021 , 55, 14795-14805	10.3	7
311	Land-based measures to mitigate climate change: Potential and feasibility by country. <i>Global Change Biology</i> , 2021 , 27, 6025-6058	11.4	17
310	Technologies and perspectives for achieving carbon neutrality. <i>Innovation(China)</i> , 2021 , 2, 100180	17.8	37
309	Microbial community shifts reflect losses of native soil carbon with pyrogenic and fresh organic matter additions and are greatest in low-carbon soils. <i>Applied and Environmental Microbiology</i> , 2021 ,	4.8	4
308	Microplastic effects on carbon cycling processes in soils. <i>PLoS Biology</i> , 2021 , 19, e3001130	9.7	41
307	Perceptions of naturalness predict US public support for Soil Carbon Storage as a climate solution. <i>Climatic Change</i> , 2021 , 166, 1	4.5	6
306	Plants and mycorrhizal symbionts acquire substantial soil nitrogen from gaseous ammonia transport. <i>New Phytologist</i> , 2021 , 231, 1746-1757	9.8	4
305	Suppressing peatland methane production by electron snorkeling through pyrogenic carbon in controlled laboratory incubations. <i>Nature Communications</i> , 2021 , 12, 4119	17.4	4
304	Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. <i>Ecology Letters</i> , 2021 , 24, 208-218	10	11
303	Plant uptake of nitrogen adsorbed to biochars made from dairy manure. <i>Scientific Reports</i> , 2021 , 11, 15001	4.9	2
302	How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. <i>GCB Bioenergy</i> , 2021 , 13, 1731	5.6	38
301	Co-precipitation induces changes to iron and carbon chemistry and spatial distribution at the nanometer scale. <i>Geochimica Et Cosmochimica Acta</i> , 2021 , 314, 1-15	5.5	2
300	Organo-organic and organo-mineral interfaces in soil at the nanometer scale. <i>Nature Communications</i> , 2020 , 11, 6103	17.4	27

(2019-2020)

299	Machine learning in space and time for modelling soil organic carbon change. <i>European Journal of Soil Science</i> , 2020 , 72, 1607	3.4	17	
298	Life Cycle Assessment and Technoeconomic Analysis of Thermochemical Conversion Technologies Applied to Poultry Litter with Energy and Nutrient Recovery. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 8436-8447	8.3	20	
297	Organo-mineral interactions and soil carbon mineralizability with variable saturation cycle frequency. <i>Geoderma</i> , 2020 , 375, 114483	6.7	10	
296	Techno-Economic Feasibility and Spatial Analysis of Thermochemical Conversion Pathways for Regional Poultry Waste Valorization. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 5763-5775	8.3	16	
295	Nitrogen speciation and transformations in fire-derived organic matter. <i>Geochimica Et Cosmochimica Acta</i> , 2020 , 276, 170-185	5.5	11	
294	Poultry Waste Valorization via Pyrolysis Technologies: Economic and Environmental Life Cycle Optimization for Sustainable Bioenergy Systems. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 4633-4646	8.3	20	
293	Soil organic matter attenuates the efficacy of flavonoid-based plant-microbe communication. <i>Science Advances</i> , 2020 , 6, eaax8254	14.3	22	
292	Dominant tree species and earthworms affect soil aggregation and carbon content along a soil degradation gradient in an agricultural landscape. <i>Geoderma</i> , 2020 , 359, 113983	6.7	13	
291	Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. <i>Soil Use and Management</i> , 2020 , 36, 2-18	3.1	87	
290	Subsoil organo-mineral associations under contrasting climate conditions. <i>Geochimica Et Cosmochimica Acta</i> , 2020 , 270, 244-263	5.5	17	
289	Short-term casting activity of earthworm Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae) after biochar additions. <i>Soil Biology and Biochemistry</i> , 2020 , 143, 107736	7.5	4	
288	Persistence of soil organic carbon caused by functional complexity. <i>Nature Geoscience</i> , 2020 , 13, 529-53	34 18.3	131	
287	Towards a global-scale soil climate mitigation strategy. <i>Nature Communications</i> , 2020 , 11, 5427	17.4	87	
286	The concept and future prospects of soil health. <i>Nature Reviews Earth & Environment</i> , 2020 , 1, 544-553	30.2	130	
285	Ammonia volatilization from composting with oxidized biochar. <i>Journal of Environmental Quality</i> , 2020 , 49, 1690-1702	3.4	3	
284	Sequential Ammonia and Carbon Dioxide Adsorption on Pyrolyzed Biomass to Recover Waste Stream Nutrients. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 7121-7131	8.3	10	
283	Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. <i>Communications Biology</i> , 2019 , 2, 233	6.7	49	
282	Nodulation of beans with inoculant carriers from pyrolyzed and non-pyrolyzed sugarcane bagasse in response to different pre-planting water availability. <i>Applied Soil Ecology</i> , 2019 , 143, 126-133	5	5	

281	Long-term sorption of lincomycin to biochars: The intertwined roles of pore diffusion and dissolved organic carbon. <i>Water Research</i> , 2019 , 161, 108-118	12.5	19
280	Agricultural Productivity and Soil Carbon Dynamics: A Bioeconomic Model. <i>American Journal of Agricultural Economics</i> , 2019 , 101, 1021-1046	3.1	13
279	Biological and thermochemical conversion of human solid waste to soil amendments. <i>Waste Management</i> , 2019 , 89, 366-378	8.6	16
278	Microbial models with minimal mineral protection can explain long-term soil organic carbon persistence. <i>Scientific Reports</i> , 2019 , 9, 6522	4.9	23
277	Carbonate determination in soils by mid-IR spectroscopy with regional and continental scale models. <i>PLoS ONE</i> , 2019 , 14, e0210235	3.7	12
276	Humic Substances Extracted by Alkali Are Invalid Proxies for the Dynamics and Functions of Organic Matter in Terrestrial and Aquatic Ecosystems. <i>Journal of Environmental Quality</i> , 2019 , 48, 207-216	3.4	85
275	Andosol clay re-aggregation observed at the microscale during physical organic matter fractionation. <i>Journal of Plant Nutrition and Soil Science</i> , 2019 , 182, 145-148	2.3	3
274	Fire-derived organic matter retains ammonia through covalent bond formation. <i>Nature Communications</i> , 2019 , 10, 664	17.4	20
273	Quantification and characterization of dissolved organic carbon from biochars. <i>Geoderma</i> , 2019 , 335, 161-169	6.7	74
272	Short-term influence of biochar and fertilizer-biochar blends on soil nutrients, fauna and maize growth. <i>Biology and Fertility of Soils</i> , 2019 , 55, 661-673	6.1	37
271	Reply to "Comment on 'Humic Substances Extracted by Alkali Are Invalid Proxies for the Dynamics and Functions of Organic Matter in Terrestrial and Aquatic Ecosystems,' by Kleber and Lehmann (2019)". <i>Journal of Environmental Quality</i> , 2019 , 48, 790-791	3.4	
270	Quantitative assessment of microbial necromass contribution to soil organic matter. <i>Global Change Biology</i> , 2019 , 25, 3578-3590	11.4	223
269	Carbon and nitrogen emissions rates and heat transfer of an indirect pyrolysis biomass cookstove. <i>Biomass and Bioenergy</i> , 2019 , 127, 105279	5.3	3
268	Soil Amendments Affect Soil Health Indicators and Crop Yield in Perennial Strawberry. <i>HortTechnology</i> , 2019 , 29, 179-188	1.3	6
267	Science-to-action through global and regional biochar networks. <i>Biochar</i> , 2019 , 1, 337-337	10	1
266	Interactive priming of soil N transformations from combining biochar and urea inputs: A 15N isotope tracer study. <i>Soil Biology and Biochemistry</i> , 2019 , 131, 166-175	7.5	40
265	Ammonia and nitrous oxide emissions from a field Ultisol amended with tithonia green manure, urea, and biochar. <i>Biology and Fertility of Soils</i> , 2019 , 55, 135-148	6.1	34
264	Enhanced Cu and Cd sorption after soil aging of woodchip-derived biochar: What were the driving factors?. <i>Chemosphere</i> , 2019 , 216, 463-471	8.4	41

(2017-2019)

263	Lower mineralizability of soil carbon with higher legacy soil moisture. <i>Soil Biology and Biochemistry</i> , 2019 , 130, 94-104	7.5	21	
262	Arbuscular mycorrhizal fungal and soil microbial communities in African Dark Earths. <i>FEMS Microbiology Ecology</i> , 2018 , 94,	4.3	6	
261	Fuel sensitivity of biomass cookstove performance. <i>Applied Energy</i> , 2018 , 215, 13-20	10.7	20	
260	Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH. <i>Science of the Total Environment</i> , 2018 , 634, 188-194	10.2	93	
259	Priming mechanisms with additions of pyrogenic organic matter to soil. <i>Geochimica Et Cosmochimica Acta</i> , 2018 , 238, 329-342	5.5	23	
258	'4 per 1,000' initiative will boost soil carbon for climate and food security. <i>Nature</i> , 2018 , 553, 27	50.4	19	
257	Soil Biodiversity Effects from Field to Fork. <i>Trends in Plant Science</i> , 2018 , 23, 17-24	13.1	36	
256	The carbon sequestration potential of terrestrial ecosystems. <i>Journal of Soils and Water Conservation</i> , 2018 , 73, 145A-152A	2.2	81	
255	Nitrogen and Phosphorus Availability of Biologically and Thermochemically Decomposed Human Wastes and Urine in Soils With Different Texture and pH. <i>Soil Science</i> , 2018 , 183, 51-65	0.9	3	
254	Soil organic carbon dynamics matching ecological equilibrium theory. <i>Ecology and Evolution</i> , 2018 , 8, 11169-11178	2.8	7	
253	Soil fungal taxonomic and functional community composition as affected by biochar properties. <i>Soil Biology and Biochemistry</i> , 2018 , 126, 159-167	7.5	32	
252	Simultaneous Quantification of Electron Transfer by Carbon Matrices and Functional Groups in Pyrogenic Carbon. <i>Environmental Science & Environmental </i>	10.3	52	
251	Development of a buried bag technique to study biochars incorporated in a compost or composting medium. <i>Journal of Soils and Sediments</i> , 2017 , 17, 656-664	3.4	3	
250	Assessing soil carbon vulnerability in the Western USA by geospatial modeling of pyrogenic and particulate carbon stocks. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2017 , 122, 354-369	3.7	14	
249	Pyrogenic carbon distribution in mineral topsoils of the northeastern United States. <i>Geoderma</i> , 2017 , 296, 69-78	6.7	6	
248	Soil macrofauna abundance under dominant tree species increases along a soil degradation gradient. <i>Soil Biology and Biochemistry</i> , 2017 , 112, 35-46	7.5	43	
247	Emissions intensity and carbon stocks of a tropical Ultisol after amendment with Tithonia green manure, urea and biochar. <i>Field Crops Research</i> , 2017 , 209, 179-188	5.5	19	
246	Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. <i>Nature Communications</i> , 2017 , 8, 14873	17.4	223	

245	Carbon and nitrogen molecular composition of soil organic matter fractions resistant to oxidation. <i>Soil Research</i> , 2017 , 55, 809	1.8	2
244	DNA extraction efficiency from soil as affected by pyrolysis temperature and extractable organic carbon of high-ash biochar. <i>Soil Biology and Biochemistry</i> , 2017 , 115, 129-136	7.5	18
243	An open-source biomass pyrolysis reactor. <i>Biofuels, Bioproducts and Biorefining</i> , 2017 , 11, 945-954	5.3	13
242	Spatial variation of soil macrofauna and nutrients in tropical agricultural systems influenced by historical charcoal production in South Nandi, Kenya. <i>Applied Soil Ecology</i> , 2017 , 119, 286-293	5	8
241	Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage. <i>Soil and Tillage Research</i> , 2017 , 165, 190-197	6.5	51
240	Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration. <i>Nature Communications</i> , 2016 , 7, 13160	17.4	68
239	Sorption of Lincomycin by Manure-Derived Biochars from Water. <i>Journal of Environmental Quality</i> , 2016 , 45, 519-27	3.4	25
238	Sulfur dynamics during long-term ecosystem development. <i>Biogeochemistry</i> , 2016 , 128, 281-305	3.8	18
237	Maize productivity dynamics in response to mineral nutrient additions and legacy organic soil inputs of contrasting quality. <i>Field Crops Research</i> , 2016 , 188, 113-120	5.5	19
236	Indigenous African soil enrichment as a climate-smart sustainable agriculture alternative. <i>Frontiers in Ecology and the Environment</i> , 2016 , 14, 71-76	5.5	54
235	Climate-smart soils. <i>Nature</i> , 2016 , 532, 49-57	50.4	883
234	Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times. <i>RSC Advances</i> , 2016 , 6, 41907-41913	3.7	46
233	Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae-biochar interactions. <i>Plant and Soil</i> , 2016 , 408, 95-105	4.2	56
232	Dynamics of microbial community composition and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter. <i>ISME Journal</i> , 2016 , 10, 2918-2930	11.9	90
231	Microbial mineralization of pyrogenic organic matter in different mineral systems. <i>Organic Geochemistry</i> , 2016 , 98, 18-26	3.1	12
230	Reverse engineering of biochar. <i>Bioresource Technology</i> , 2015 , 183, 163-74	11	25
229	Organic carbon dynamics in soils with pyrogenic organic matter that received plant residue additions over seven years. <i>Soil Biology and Biochemistry</i> , 2015 , 88, 268-274	7.5	21
228	The contentious nature of soil organic matter. <i>Nature</i> , 2015 , 528, 60-8	50.4	1532

(2014-2015)

227	Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 4513-26	5.1	21
226	Methods for Studying Soil Organic Matter: Nature, Dynamics, Spatial Accessibility, and Interactions with Minerals 2015 , 383-419		9
225	Phosphorus availability to beans via interactions between mycorrhizas and biochar. <i>Plant and Soil</i> , 2015 , 395, 105-123	4.2	57
224	The way forward in biochar research: targeting trade-offs between the potential wins. <i>GCB Bioenergy</i> , 2015 , 7, 1-13	5.6	177
223	Pyrogenic carbon controls across a soil catena in the Pacific Northwest. <i>Catena</i> , 2015 , 124, 53-59	5.8	15
222	A dual-isotope approach to allow conclusive partitioning between three sources. <i>Nature Communications</i> , 2015 , 6, 8708	17.4	23
221	Terrestrial pyrogenic carbon export to fluvial ecosystems: Lessons learned from the White Nile watershed of East Africa. <i>Global Biogeochemical Cycles</i> , 2015 , 29, 1911-1928	5.9	25
220	Recent achievement of sustainable soil management in Sub-Saharan Africa. <i>Nutrient Cycling in Agroecosystems</i> , 2015 , 102, 1-3	3.3	5
219	Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. <i>Chemosphere</i> , 2015 , 138, 120-6	8.4	153
218	Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry?. <i>Journal of the Science of Food and Agriculture</i> , 2015 , 95, 281-8	4.3	59
217	Ecotoxicological characterization of biochars: role of feedstock and pyrolysis temperature. <i>Science of the Total Environment</i> , 2015 , 512-513, 552-561	10.2	69
216	Short-term mesofauna responses to soil additions of corn stover biochar and the role of microbial biomass. <i>Applied Soil Ecology</i> , 2015 , 89, 10-17	5	55
215	Trade-offs between soil-based functions in wetlands restored with soil amendments of differing lability 2015 , 25, 215-25		12
214	Partitioning the contributions of biochar properties to enhanced biological nitrogen fixation in common bean (Phaseolus vulgaris). <i>Biology and Fertility of Soils</i> , 2015 , 51, 479-491	6.1	69
213	Sorption properties for black carbon (wood char) after long term exposure in soils. <i>Organic Geochemistry</i> , 2014 , 70, 53-61	3.1	42
212	Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts. <i>Fuel</i> , 2014 , 117, 742-748	7.1	98
211	The influence of feedstock and production temperature on biochar carbon chemistry: A solid-state 13C NMR study. <i>Biomass and Bioenergy</i> , 2014 , 60, 121-129	5.3	129
210	Can functional group composition of alkaline isolates from black carbon-rich soils be identified on a sub-100 nm scale?. <i>Geoderma</i> , 2014 , 235-236, 163-169	6.7	11

209	Short- and long-term flammability of biochars. <i>Biomass and Bioenergy</i> , 2014 , 69, 183-191	5.3	25
208	Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 6492-9	10.3	45
207	Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization by plants. <i>Soil Biology and Biochemistry</i> , 2014 , 73, 33-41	7.5	70
206	Atrazine leaching from biochar-amended soils. <i>Chemosphere</i> , 2014 , 95, 346-52	8.4	67
205	Stimulating nitrate removal processes of restored wetlands. <i>Environmental Science & Emp; Technology</i> , 2014 , 48, 7365-73	10.3	33
204	The sensitivity of carbon turnover in the Community Land Model to modified assumptions about soil processes. <i>Earth System Dynamics</i> , 2014 , 5, 211-221	4.8	25
203	Filling the phosphorus fertilizer gap in developing countries. <i>Nature Geoscience</i> , 2014 , 7, 3-3	18.3	27
202	N2O and CH4 emission from soil amended with steam-activated biochar. <i>Journal of Plant Nutrition and Soil Science</i> , 2014 , 177, 34-38	2.3	32
201	Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon. <i>Environmental Science & Environmental Science &</i>	10.3	55
200	Distinguishing variability from uncertainty. <i>Nature Climate Change</i> , 2014 , 4, 153-153	21.4	23
199	Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. <i>Soil Biology and Biochemistry</i> , 2014 , 72, 152-162	7.5	116
198	Biochar Systems for Smallholders in Developing Countries: Leveraging Current Knowledge and Exploring Future Potential for Climate-Smart Agriculture 2014 ,		16
198 197		4.2	16 73
	Exploring Future Potential for Climate-Smart Agriculture 2014, Soil erosion, runoff and nutrient losses in an avocado (Persea americana Mill) hillside orchard under	4.2	
197	Exploring Future Potential for Climate-Smart Agriculture 2014 , Soil erosion, runoff and nutrient losses in an avocado (Persea americana Mill) hillside orchard under different groundcover management systems. <i>Plant and Soil</i> , 2013 , 368, 393-406 Nitrogen dynamics following field application of biochar in a temperate North American		73
197 196	Exploring Future Potential for Climate-Smart Agriculture 2014, Soil erosion, runoff and nutrient losses in an avocado (Persea americana Mill) hillside orchard under different groundcover management systems. <i>Plant and Soil</i> , 2013, 368, 393-406 Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. <i>Plant and Soil</i> , 2013, 365, 239-254 Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of	4.2	73
197 196 195	Exploring Future Potential for Climate-Smart Agriculture 2014, Soil erosion, runoff and nutrient losses in an avocado (Persea americana Mill) hillside orchard under different groundcover management systems. <i>Plant and Soil</i> , 2013, 368, 393-406 Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. <i>Plant and Soil</i> , 2013, 365, 239-254 Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants. <i>Ecological Engineering</i> , 2013, 60, 50-59 One size does not fit all: Conservation farming success in Africa more dependent on management	4.2 3.9 5.7	73 158 63

(2012-2013)

191	Stream water nutrient and organic carbon exports from tropical headwater catchments at a soil degradation gradient. <i>Nutrient Cycling in Agroecosystems</i> , 2013 , 95, 145-158	3.3	22
190	Predicting pyrogenic organic matter mineralization from its initial properties and implications for carbon management. <i>Organic Geochemistry</i> , 2013 , 64, 76-83	3.1	20
189	The knowns, known unknowns and unknowns of sequestration of soil organic carbon. <i>Agriculture, Ecosystems and Environment</i> , 2013 , 164, 80-99	5.7	834
188	Biochar and denitrification in soils: when, how much and why does biochar reduce ND emissions?. <i>Scientific Reports</i> , 2013 , 3, 1732	4.9	399
187	Soil Security: Solving the Global Soil Crisis. <i>Global Policy</i> , 2013 , 4, 434-441	1.8	173
186	Ammonium, Nitrate, and Phosphate Sorption to and Solute Leaching from Biochars Prepared from Corn Stover (L.) and Oak Wood (spp.). <i>Journal of Environmental Quality</i> , 2013 , 42, 137-44	3.4	112
185	Abundant and Stable Char Residues in Soils: Implications for Soil Fertility and Carbon Sequestration 2013 , 479-484		2
184	Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. <i>Bioresource Technology</i> , 2012 , 111, 84-91	11	159
183	Characterization of biochars to evaluate recalcitrance and agronomic performance. <i>Bioresource Technology</i> , 2012 , 114, 644-53	11	617
182	Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. <i>Biogeochemistry</i> , 2012 , 111, 83-95	3.8	80
181	Micro- and nano-environments of carbon sequestration: Multi-element STXMNEXAFS spectromicroscopy assessment of microbial carbon and mineral associations. <i>Chemical Geology</i> , 2012 , 329, 53-73	4.2	110
180	Effective monitoring of agriculture: a response. <i>Journal of Environmental Monitoring</i> , 2012 , 14, 738-42		13
179	Influence of activated carbon and biochar on phytotoxicity of air-dried sewage sludges to Lepidium sativum. <i>Ecotoxicology and Environmental Safety</i> , 2012 , 80, 321-6	7	33
178	Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. <i>Environmental Science & Environmental Science & Envi</i>	10.3	410
177	Modeling the impact of natural resource-based poverty traps on food security in Kenya: The Crops, Livestock and Soils in Smallholder Economic Systems (CLASSES) model□ <i>Food Security</i> , 2012 , 4, 423-439	6.7	43
176	Micro- and nano-environments of C sequestration in soil: a multi-elemental STXM-NEXAFS assessment of black C and organomineral associations. <i>Science of the Total Environment</i> , 2012 , 438, 372	2-88 ^{.2}	43
175	Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. <i>Environmental Science & Environmental Science &</i>	10.3	188
174	Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. <i>Biology and Fertility of Soils</i> , 2012 , 48, 271-284	6.1	456

173	Analytical electron microscopy of black carbon and microaggregated mineral matter in Amazonian dark Earth. <i>Journal of Microscopy</i> , 2012 , 245, 129-39	1.9	17
172	Soil Properties and Vegetative Development in Four Restored Freshwater Depressional Wetlands. <i>Soil Science Society of America Journal</i> , 2012 , 76, 1482-1495	2.5	21
171	Comparison of Wet-Digestion and Dry-Ashing Methods for Total Elemental Analysis of Biochar. <i>Communications in Soil Science and Plant Analysis</i> , 2012 , 43, 1042-1052	1.5	145
170	Stream Discharge in Tropical Headwater Catchments as a Result of Forest Clearing and Soil Degradation. <i>Earth Interactions</i> , 2012 , 16, 1-18	1.5	41
169	Keeping carbon down. <i>Carbon Management</i> , 2012 , 3, 21-22	3.3	2
168	The Effects of Some External Management Factors on the Nitrogen Composition of Cattle Manure on Smallholder Farms. <i>International Journal of Agronomy</i> , 2012 , 2012, 1-11	1.9	3
167	Nutrient leaching in a Colombian savanna Oxisol amended with biochar. <i>Journal of Environmental Quality</i> , 2012 , 41, 1076-86	3.4	166
166	Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	283
165	Community Markets for Conservation (COMACO) links biodiversity conservation with sustainable improvements in livelihoods and food production. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 13957-62	11.5	53
164	C 1s K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy for characterizing functional group chemistry of black carbon. <i>Organic Geochemistry</i> , 2011 , 42, 1055-1064	3.1	84
163	Persistence of soil organic matter as an ecosystem property. <i>Nature</i> , 2011 , 478, 49-56	50.4	3282
162	Speciation and long- and short-term molecular-level dynamics of soil organic sulfur studied by X-ray absorption near-edge structure spectroscopy. <i>Journal of Environmental Quality</i> , 2011 , 40, 704-18	3.4	26
161	Wavelet analysis of soil variation at nanometre- to micrometre-scales: an example of organic carbon content in a micro-aggregate. <i>European Journal of Soil Science</i> , 2011 , 62, 617-628	3.4	8
160	Anthropogenic soils in the Central Amazon: from categories to a continuum. <i>Area</i> , 2011 , 43, 264-273	1.7	35
159	Biochar effects on soil biota 🖪 review. <i>Soil Biology and Biochemistry</i> , 2011 , 43, 1812-1836	7.5	2707
158	Charcoal quality does not change over a century in a tropical agro-ecosystem. <i>Soil Biology and Biochemistry</i> , 2011 , 43, 1992-1994	7.5	33
157	Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. <i>Bioresource Technology</i> , 2011 , 102, 8877-84	11	642
156	Long-term soil quality degradation along a cultivation chronosequence in western Kenya. Agriculture, Ecosystems and Environment, 2011, 141, 86-99	5.7	77

(2010-2011)

155	Fluorescence index as an indicator of dissolved organic carbon quality in hydrologic flowpaths of forested tropical watersheds. <i>Biogeochemistry</i> , 2011 , 105, 149-157	3.8	41
154	Runoff sources and land cover change in the Amazon: an end-member mixing analysis from small watersheds. <i>Biogeochemistry</i> , 2011 , 105, 7-18	3.8	31
153	Modeling black carbon degradation and movement in soil. <i>Plant and Soil</i> , 2011 , 345, 223-236	4.2	69
152	Towards sustainable land management in the drylands: Scientific connections in monitoring and assessing dryland degradation, climate change and biodiversity. <i>Land Degradation and Development</i> , 2011 , 22, 248-260	4.4	73
151	Climate change impact of biochar cook stoves in western Kenyan farm households: system dynamics model analysis. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	51
150	Biomass availability, energy consumption and biochar production in rural households of Western Kenya. <i>Biomass and Bioenergy</i> , 2011 , 35, 3537-3546	5-3	41
149	Biochar in Soil for Climate Change Mitigation and Adaptation. Soil Biology, 2011, 345-368	1	15
148	Fate of soil-applied black carbon: downward migration, leaching and soil respiration. <i>Global Change Biology</i> , 2010 , 16, 1366-1379	11.4	515
147	Monitoring the world's agriculture. <i>Nature</i> , 2010 , 466, 558-60	50.4	115
146	Organic Carbon Chemistry in Soils Observed by Synchrotron-Based Spectroscopy. <i>Developments in Soil Science</i> , 2010 , 289-312	1.3	25
145	Sustainable biochar to mitigate global climate change. <i>Nature Communications</i> , 2010 , 1, 56	17.4	1300
144	Role of Biochar in Mitigation of Climate Change. <i>ICP Series on Climate Change Impacts, Adaptation, and Mitigation,</i> 2010 , 343-363		8
143	An investigation into the reactions of biochar in soil. Soil Research, 2010, 48, 501	1.8	687
142	Temperature sensitivity of black carbon decomposition and oxidation. <i>Environmental Science & Environmental Science & Technology</i> , 2010 , 44, 3324-31	10.3	283
141	Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry, 2010, 41, 206-213	3.1	425
140	Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: Results from growth-chamber and field experiments. <i>Applied Soil Ecology</i> , 2010 , 46, 450-456	5	167
139	Biochar projects for mitigating climate change: an investigation of critical methodology issues for carbon accounting. <i>Carbon Management</i> , 2010 , 1, 89-107	3.3	22

137	Effects of storage methods on chemical composition of manure and manure decomposition in soil in small-scale Kenyan systems. <i>Agriculture, Ecosystems and Environment</i> , 2010 , 139, 134-141	5.7	16
136	Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. <i>Environmental Science & Environmental Sci</i>	10.3	644
135	Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. <i>Microbial Ecology</i> , 2010 , 60, 192-205	4.4	144
134	Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. <i>Plant and Soil</i> , 2010 , 333, 117-128	4.2	811
133	Transport and retention of biochar particles in porous media: effect of pH, ionic strength, and particle size. <i>Ecohydrology</i> , 2010 , 3, 497-508	2.5	79
132	Sources and Sinks of Trace Gases in Amazonia and the Cerrado. <i>Geophysical Monograph Series</i> , 2009 , 31	1 <u>-</u> 336	8
131	Anthropogenic and climate influences on biogeochemical dynamics and molecular-level speciation of soil sulfur 2009 , 19, 989-1002		18
130	Soil organic C stabilization and thresholds in C saturation. <i>Soil Biology and Biochemistry</i> , 2009 , 41, 2100-	2 / 1. G 4	45
129	Review of the pyrolysis platform for coproducing bio-oil and biochar. <i>Biofuels, Bioproducts and Biorefining</i> , 2009 , 3, 547-562	5.3	473
128	Long-term black carbon dynamics in cultivated soil. <i>Biogeochemistry</i> , 2009 , 92, 163-176	3.8	118
127	Biological carbon sequestration must and can be a win-win approach. Climatic Change, 2009, 97, 459-46	3 4.5	41
126	Biogenic calcium phosphate transformation in soils over millennial time scales. <i>Journal of Soils and Sediments</i> , 2009 , 9, 194-205	3.4	28
125	Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. <i>Microbial Ecology</i> , 2009 , 58, 23-35	4.4	215
124	Nitrogen aboveground turnover and soil stocks to 8 m depth in primary and selectively logged forest in southern Amazonia. <i>Global Change Biology</i> , 2009 , 16, 1793-1805	11.4	9
123	Termite (Insecta: Isoptera) Species Composition in a Primary Rain Forest and Agroforests in Central Amazonia. <i>Biotropica</i> , 2009 , 41, 226-233	2.3	43
122	Biochar Dne way forward for soil carbon in offset mechanisms in Africa?. <i>Environmental Science and Policy</i> , 2009 , 12, 1024-1027	6.2	47
121	Ageing of black carbon along a temperature gradient. <i>Chemosphere</i> , 2009 , 75, 1021-7	8.4	218
120	Black carbon decomposition under varying water regimes. <i>Organic Geochemistry</i> , 2009 , 40, 846-853	3.1	276

(2008-2009)

119	Carbon (1s) NEXAFS Spectroscopy of Biogeochemically Relevant Reference Organic Compounds. <i>Soil Science Society of America Journal</i> , 2009 , 73, 1817-1830	2.5	127
118	Charcoal Making in the Brazilian Amazon: Economic Aspects of Production and Carbon Conversion Efficiencies of Kilns 2009 , 411-422		3
117	Terra Preta Nova 🖫 Where to from Here? 2009 , 473-486		25
116	Spatial complexity of soil organic matter forms at nanometre scales. <i>Nature Geoscience</i> , 2008 , 1, 238-24	2 18.3	314
115	Australian climatellarbon cycle feedback reduced by soil black carbon. <i>Nature Geoscience</i> , 2008 , 1, 832-8	3 35 .3	279
114	Nutrient constraints to tropical agroecosystem productivity in long-term degrading soils. <i>Global Change Biology</i> , 2008 , 14, 2810-2822	11.4	35
113	Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. <i>Environmental Science & Environmental Science </i>	10.3	392
112	Stability of black carbon in soils across a climatic gradient. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		162
111	Atmospheric SO2 emissions since the late 1800s change organic sulfur forms in humic substance extracts of soils. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	34
110	Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 1598-1610	5.5	634
109	Stability of biomass-derived black carbon in soils. <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 6069-6078	85.5	242
108	CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	158
107	Effects of Arbuscular Mycorrhizal Fungi on The Exotic Invasive Vine Pale Swallow-Wort (Vincetoxicum rossicum). <i>Invasive Plant Science and Management</i> , 2008 , 1, 142-152	1	31
106	Comment on "Fire-derived charcoal causes loss of forest humus". <i>Science</i> , 2008 , 321, 1295; author reply 1295	33.3	53
105	Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. <i>Journal of Plant Nutrition and Soil Science</i> , 2008 , 171, 893-899	2.3	399
104	Nutrient availability at different altitudes in a tropical montane forest in Ecuador. <i>Journal of Tropical Ecology</i> , 2008 , 24, 397-406	1.3	73
103	Long-term black carbon dynamics in cultivated soil. <i>Biogeochemistry</i> , 2008 , 89, 295-308	3.8	165
102	Reversibility of Soil Productivity Decline with Organic Matter of Differing Quality Along a Degradation Gradient. <i>Ecosystems</i> , 2008 , 11, 726-739	3.9	259

101	Storm pulses of dissolved CO2 in a forested headwater Amazonian stream explored using hydrograph separation. <i>Water Resources Research</i> , 2007 , 43,	5.4	32
100	Soil mineral N dynamics beneath mixtures of leaves from legume and fruit trees in Central Amazonian multi-strata agroforests. <i>Acta Amazonica</i> , 2007 , 37, 313-320	0.8	4
99	A handful of carbon. <i>Nature</i> , 2007 , 447, 143-4	50.4	1624
98	Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. <i>Global Change Biology</i> , 2007 , 13, 511-530	11.4	166
97	Root tapering between branching points should be included in fractal root system analysis. <i>Ecological Modelling</i> , 2007 , 207, 363-366	3	21
96	Long-term effects of rainforest disturbance on the nutrient composition of throughfall, organic layer percolate and soil solution at Mt. Kilimanjaro. <i>Science of the Total Environment</i> , 2007 , 376, 241-54	10.2	13
95	Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. <i>Biology and Fertility of Soils</i> , 2007 , 43, 699-708	6.1	641
94	Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. <i>Plant and Soil</i> , 2007 , 291, 275-290	4.2	832
93	Mycorrhizal responses to biochar in soil Leoncepts and mechanisms. Plant and Soil, 2007, 300, 9-20	4.2	730
92	Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms. <i>Biogeochemistry</i> , 2007 , 85, 45-57	3.8	253
91	Land-Use Change and Stream Water Fluxes: Decadal Dynamics in Watershed Nitrate Exports. <i>Ecosystems</i> , 2007 , 10, 1182-1196	3.9	10
90	Bio-energy in the black. Frontiers in Ecology and the Environment, 2007, 5, 381-387	5.5	1103
89	Litterfall production and fluvial export in headwater catchments of the southern Amazon. <i>Journal of Tropical Ecology</i> , 2007 , 23, 329-335	1.3	34
88	Carbon and nutrient stocks in roots of forests at different altitudes in the Ecuadorian Andes. <i>Journal of Tropical Ecology</i> , 2007 , 23, 319-328	1.3	29
87	The impact of mound-building termites on surface soil properties in a secondary forest of Central Amazonia. <i>Applied Soil Ecology</i> , 2007 , 37, 267-276	5	69
86	Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian Dark Earths. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 2285-2298	5.5	99
85	Variabilidade espacial de atributos filicos de solo usada na identificali de classes pedoligicas de microbacias na Amazilia meridional. <i>Revista Brasileira De Ciencia Do Solo</i> , 2007 , 31, 91-100	1.5	11
84	Distribui ß espacial de carbono em solo sob floresta prim ß ia na Amazßia meridional. <i>Revista Arvore</i> , 2007 , 31, 83-92	1	10

(2006-2006)

83	Inorganic and organic phosphorus pools in earthworm casts (Glossoscolecidae) and a Brazilian rainforest Oxisol. <i>Soil Biology and Biochemistry</i> , 2006 , 38, 553-560	7.5	31
82	Sulphur speciation and turnover in soils: evidence from sulphur K-edge XANES spectroscopy and isotope dilution studies. <i>Soil Biology and Biochemistry</i> , 2006 , 38, 1000-1007	7.5	66
81	Hydrological and biogeochemical processes in a changing Amazon: results from small watershed studies and the large-scale biosphere-atmosphere experiment. <i>Hydrological Processes</i> , 2006 , 20, 2467-7	2478	23
80	Organic carbon fluxes within and streamwater exports from headwater catchments in the southern Amazon. <i>Hydrological Processes</i> , 2006 , 20, 2599-2614	3.3	76
79	Double-funneling of trees: Stemflow and root-induced preferential flow1 Associate Editor: Tim Moore <i>Ecoscience</i> , 2006 , 13, 324-333	1.1	183
78	Growth and reproductive potential of the invasive exotic vine Vincetoxicum rossicum in northern New York State. <i>Canadian Journal of Botany</i> , 2006 , 84, 1771-1780		31
77	Biomass, harvestable area, and forest structure estimated from commercial timber inventories and remotely sensed imagery in southern Amazonia. <i>Forest Ecology and Management</i> , 2006 , 233, 121-132	3.9	20
76	Soil organic sulfur forms and dynamics in the Great Plains of North America as influenced by long-term cultivation and climate. <i>Geoderma</i> , 2006 , 133, 160-172	6.7	38
75	Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 2006 , 37, 1477-1488	3.1	783
74	Nanoscale Biogeocomplexity of the Organomineral Assemblage in Soil. <i>Soil Science Society of America Journal</i> , 2006 , 70, 1708-1718	2.5	92
73	Bio-Char Soil Management on Highly Weathered Soils in the Humid Tropics. <i>Books in Soils, Plants, and the Environment,</i> 2006 , 517-529		154
72	Black Carbon Increases Cation Exchange Capacity in Soils. <i>Soil Science Society of America Journal</i> , 2006 , 70, 1719-1730	2.5	1307
71	Subsoil retention of organic and inorganic nitrogen in a Brazilian savanna Oxisol. <i>Soil Use and Management</i> , 2006 , 20, 163-172	3.1	3
70	Root Morphology and Anchorage of Six Native Tree Species from a Tropical Montane Forest and an Elfin Forest in Ecuador. <i>Plant and Soil</i> , 2006 , 279, 173-185	4.2	42
69	The Vertical Pattern of Rooting and Nutrient Uptake at Different Altitudes of a South Ecuadorian Montane Forest. <i>Plant and Soil</i> , 2006 , 286, 287-299	4.2	65
68	Nitrogen dynamics in maize-based agroforestry systems as affected by landscape position in southern Malawi. <i>Nutrient Cycling in Agroecosystems</i> , 2006 , 75, 271-284	3.3	6
67	TOC, TON, TOS and TOP in Rainfall, Throughfall, Litter Percolate and Soil Solution of a Montane Rainforest Succession at Mt. Kilimanjaro, Tanzania. <i>Biogeochemistry</i> , 2006 , 78, 361-387	3.8	27
66	DOC and DIC in Flowpaths of Amazonian Headwater Catchments with Hydrologically Contrasting Soils. <i>Biogeochemistry</i> , 2006 , 81, 45-57	3.8	89

65	Bio-char Sequestration in Terrestrial Ecosystems 🖪 Review. <i>Mitigation and Adaptation Strategies for Global Change</i> , 2006 , 11, 403-427	3.9	1780
64	Bio-char Sequestration in Terrestrial Ecosystems 🖪 Review 2006 , 11, 403		2
63	Long-term dynamics of phosphorus forms and retention in manure-amended soils. <i>Environmental Science & Environmental Science & Environmental Science & Environmental Science & Environmental &</i>	10.3	103
62	Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. <i>Environmental Science & Environmental Scie</i>	10.3	163
61	Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles. <i>Global Biogeochemical Cycles</i> , 2005 , 19,	5.9	178
60	Spatial and temporal variability of soil water repellency of Amazonian pastures. <i>Soil Research</i> , 2005 , 43, 319	1.8	27
59	Weed dynamics on Amazonian Dark Earth and adjacent soils of Brazil. <i>Agriculture, Ecosystems and Environment</i> , 2005 , 111, 1-12	5.7	19
58	Weed composition and cover after three years of soil fertility management in the central Brazilian Amazon: Compost, fertilizer, manure and charcoal applications. <i>Weed Biology and Management</i> , 2005 , 5, 69-76	1.4	48
57	Sulphur speciation and biogeochemical cycling in long-term arable cropping of subtropical soils: evidence from wet-chemical reduction and S K-edge XANES spectroscopy. <i>European Journal of Soil Science</i> , 2005 , 56, 621-634	3.4	37
56	Nitrogen transfer between high- and low-quality leaves on a nutrient-poor Oxisol determined by 15N enrichment. <i>Soil Biology and Biochemistry</i> , 2005 , 37, 787-794	7.5	45
55	Carbon K-Edge NEXAFS and FTIR-ATR Spectroscopic Investigation of Organic Carbon Speciation in Soils. <i>Soil Science Society of America Journal</i> , 2005 , 69, 107-119	2.5	150
54	RAPID WATER FLOW AND TRANSPORT OF INORGANIC AND ORGANIC NITROGEN IN A HIGHLY AGGREGATED TROPICAL SOIL. <i>Soil Science</i> , 2004 , 169, 330-341	0.9	35
53	Microbial Response to Charcoal Amendments of Highly Weathered Soils and Amazonian Dark Earths in Central Amazonia [Preliminary Results 2004 , 195-212		40
52	Sequential P Fractionation of Relict Anthropogenic Dark Earths of Amazonia 2004 , 113-123		9
51	Subsoil retention of organic and inorganic nitrogen in a Brazilian savanna Oxisol. <i>Soil Use and Management</i> , 2004 , 20, 163-172	3.1	20
50	Sulfur K-edge XANES Spectroscopy as a Tool for Understanding Sulfur Dynamics in Soil Organic Matter. <i>Soil Science Society of America Journal</i> , 2003 , 67, 1721-1731	2.5	77
49	Fertilization and cover crop effects on soil nitrogen and plant nutrition in a young guarana plantation. <i>Acta Amazonica</i> , 2003 , 33, 535-548	0.8	
48	Nitrogen uptake from 15N-enriched fertilizer by four tree crops in an Amazonian agroforest. <i>Agroforestry Systems</i> , 2003 , 57, 213-224	2	12

(2001-2003)

47	Subsoil root activity in tree-based cropping systems. <i>Plant and Soil</i> , 2003 , 255, 319-331	4.2	76
46	Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. <i>Plant and Soil</i> , 2003 , 249, 343-357	4.2	1162
45	Soil microbial activities in tree-based cropping systems and natural forests of the Central Amazon, Brazil. <i>Biology and Fertility of Soils</i> , 2003 , 38, 1-9	6.1	33
44	Nitrogen availability and leaching during the terrestrial phase in a vfzea forest of the Central Amazon floodplain. <i>Biology and Fertility of Soils</i> , 2003 , 39, 62-64	6.1	7
43	Determining Nutrient Bioavailability of Amazonian Dark Earth Solis IMethodological Challenges 2003 , 255-270		10
42	Subsoil root activity in tree-based cropping systems 2003 , 319-331		3
41	Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments 2003 , 249, 343		2
40	Soil Fertility and Production Potential 2003 , 105-124		13
39	Amazonian Dark Earths as Carbon Stores and Sinks 2003 , 125-139		25
38	Soil Organic Matter Dynamics in the Subhumid Agroecosystems of the Ethiopian Highlands. <i>Soil Science Society of America Journal</i> , 2002 , 66, 969-978	2.5	58
37	Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal la review. <i>Biology and Fertility of Soils</i> , 2002 , 35, 219-230	6.1	1676
36	Nitrogen cycling assessment in a hedgerow intercropping system using 15N enrichment. <i>Nutrient Cycling in Agroecosystems</i> , 2002 , 62, 1-9	3.3	10
35	Phosphorus forms and dynamics as influenced by land use changes in the sub-humid Ethiopian highlands. <i>Geoderma</i> , 2002 , 105, 21-48	6.7	102
34	Soil Organic Matter Composition in the Subhumid Ethiopian Highlands as Influenced by Deforestation and Agricultural Management. <i>Soil Science Society of America Journal</i> , 2002 , 66, 68-82	2.5	56
33	Soil Organic Matter Composition in the Subhumid Ethiopian Highlands as Influenced by Deforestation and Agricultural Management. <i>Soil Science Society of America Journal</i> , 2002 , 66, 68	2.5	41
32	Soil Organic Matter Dynamics in the Subhumid Agroecosystems of the Ethiopian Highlands. <i>Soil Science Society of America Journal</i> , 2002 , 66, 969	2.5	57
31	Nutrient leaching. 2002 , 151-166		11
30	Exchange resin cores for the estimation of nutrient fluxes in highly permeable tropical soil. <i>Journal of Plant Nutrition and Soil Science</i> , 2001 , 164, 57-64	2.3	16

29	Land use effects on amino sugar signature of chromic Luvisol in the semi-arid part of northern Tanzania. <i>Biology and Fertility of Soils</i> , 2001 , 33, 33-40	6.1	42
28	Carbon and nitrogen mineralization in cultivated and natural savanna soils of Northern Tanzania. <i>Biology and Fertility of Soils</i> , 2001 , 33, 301-309	6.1	39
27	Root activity patterns in an Amazonian agroforest with fruit trees determined by 32P, 33P and 15N applications. <i>Agroforestry Systems</i> , 2001 , 52, 185-197	2	25
26	Phosphorus management for perennial crops in central Amazonian upland soils. <i>Plant and Soil</i> , 2001 , 237, 309-319	4.2	21
25	Plant-soil interactions in multistrata agroforestry in the humid tropicsa. <i>Agroforestry Systems</i> , 2001 , 53, 85-102	2	86
24	Inorganic and organic soil phosphorus and sulfur pools in an Amazonian multistrata agroforestry system. <i>Agroforestry Systems</i> , 2001 , 53, 113-124	2	29
23	Tracer methods to assess nutrient uptake distribution in multistrata agroforestry systems. <i>Agroforestry Systems</i> , 2001 , 53, 133-140	2	17
22	Organic matter stabilization in a Xanthic Ferralsol of the central Amazon as affected by single trees: chemical characterization of density, aggregate, and particle size fractions. <i>Geoderma</i> , 2001 , 99, 147-168	6.7	48
21	Sulfur fractions in particle-size separates of the sub-humid Ethiopian highlands as influenced by land use changes. <i>Geoderma</i> , 2001 , 102, 41-59	6.7	53
20	Land use effects on soil organic matter properties of chromic luvisols in semi-arid northern Tanzania: carbon, nitrogen, lignin and carbohydrates. <i>Agriculture, Ecosystems and Environment</i> , 2000 , 78, 203-213	5.7	161
19	Water use efficiency and uptake patterns in a runoff agroforestry system in an arid environment. <i>Agroforestry Systems</i> , 2000 , 49, 223-243	2	36
18	Pruning effects on root distribution and nutrient dynamics in an acacia hedgerow planting in northern Kenya. <i>Agroforestry Systems</i> , 2000 , 50, 59-75	2	34
17	Nitrogen use in mixed tree crop plantations with a legume cover crop. <i>Plant and Soil</i> , 2000 , 225, 63-72	4.2	9
16	Nutrient interactions of alley cropped Sorghum bicolor and Acacia saligna in a runoff irrigation system in Northern Kenya. <i>Plant and Soil</i> , 1999 , 210, 249-262	4.2	15
15	Nitrogen uptake of sorghum (Sorghum bicolor L.) from tree mulch and mineral fertilizer under high leaching conditions estimated by nitrogen-15 enrichment. <i>Biology and Fertility of Soils</i> , 1999 , 30, 90-95	6.1	16
14	Emissions of nitrous oxide from runoff-irrigated and rainfed soils in semiarid north-west Kenya. <i>Agriculture, Ecosystems and Environment</i> , 1999 , 72, 201-205	5.7	18
13	Nutrient cycling in an agroforestry system with runoff irrigation in Northern Kenya. <i>Forestry Sciences</i> , 1999 , 49-70		
12	Fine root turnover of irrigated hedgerow intercropping in Northern Kenya. <i>Plant and Soil</i> , 1998 , 198, 19-31	4.2	33

LIST OF PUBLICATIONS

11	Nutrient cycling in an agroforestry system with runoff irrigation in Northern Kenya. <i>Agroforestry Systems</i> , 1998 , 43, 49-70	2	20	
10	Below-ground interactions in dryland agroforestry. Forest Ecology and Management, 1998, 111, 157-169	3.9	90	
9	Short-term effects of soil amendment with tree legume biomass on carbon and nitrogen in particle size separates in Central Togo. <i>Soil Biology and Biochemistry</i> , 1998 , 30, 1545-1552	7.5	25	
8	Runoff irrigation of crops with contrasting root and shoot development in northern Kenya: water depletion and above- and below-ground biomass production. <i>Journal of Arid Environments</i> , 1998 , 38, 479-492	2.5	14	
7	Factors controlling humification and mineralization of soil organic matter in the tropics. <i>Geoderma</i> , 1997 , 79, 117-161	6.7	485	
6	Decomposition and nutrient release from leaves, twigs and roots of three alley-cropped tree legumes in central Togo. <i>Agroforestry Systems</i> , 1995 , 29, 21-36	2	53	
5	Contrasting effects of roots and mulch from three agroforestry tree species on yields of alley cropped maize. <i>Agriculture, Ecosystems and Environment</i> , 1995 , 54, 89-101	5.7	26	
4	Synchrotron-Based Near-Edge X-Ray Spectroscopy of Natural Organic Matter in Soils and Sediments729	9-781	19	
3	Valorization of animal bone waste for agricultural use through biomass co-pyrolysis and bio-augmentation. <i>Biomass Conversion and Biorefinery</i> ,1	2.3		
2	Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions		4	
1	Probing the nature of soil organic matter. Critical Reviews in Environmental Science and Technology,1-22	11.1	4	