Spyros E Hirdaris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4645932/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Loads for use in the design of ships and offshore structures. Ocean Engineering, 2014, 78, 131-174.	4.3	251
2	A Big Data Analytics Method for the Evaluation of Ship - Ship Collision Risk reflecting Hydrometeorological Conditions. Reliability Engineering and System Safety, 2021, 213, 107674.	8.9	116
3	Considerations on the potential use of Nuclear Small Modular Reactor (SMR) technology for merchant marine propulsion. Ocean Engineering, 2014, 79, 101-130.	4.3	82
4	A method for the direct assessment of ship collision damage and flooding risk in real conditions. Ocean Engineering, 2021, 237, 109605.	4.3	80
5	A predictive analytics method for maritime traffic flow complexity estimation in inland waterways. Reliability Engineering and System Safety, 2022, 220, 108317.	8.9	70
6	Two- and three-dimensional hydroelastic modelling of a bulker in regular waves. Marine Structures, 2003, 16, 627-658.	3.8	64
7	A framework to model the STPA hierarchical control structure of an autonomous ship. Safety Science, 2020, 132, 104939.	4.9	58
8	A machine learning method for the evaluation of ship grounding risk in real operational conditions. Reliability Engineering and System Safety, 2022, 226, 108697.	8.9	57
9	Risk analysis of damaged ships – a data-driven Bayesian approach. Ships and Offshore Structures, 2012, 7, 333-347.	1.9	53
10	Determination of the dynamic critical maneuvering area in an encounter between two vessels: Operation with negligible environmental disruption. Ocean Engineering, 2020, 213, 107709.	4.3	48
11	Design safety margin of a 10,000 TEU container ship through ultimate hull girder load combination analysis. Marine Structures, 2016, 46, 78-101.	3.8	42
12	Stochastic uncertainty modelling for ship design loads and operational guidance. Ocean Engineering, 2014, 86, 47-57.	4.3	37
13	A 6-DoF maneuvering model for the rapid estimation of hydrodynamic actions in deep and shallow waters. Ocean Engineering, 2020, 218, 108103.	4.3	37
14	The influence of nonlinearities on the symmetric hydrodynamic response of a 10,000 TEU Container ship. Ocean Engineering, 2016, 111, 166-178.	4.3	34
15	Hydroelasticity of ships: Recent advances and future trends. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2009, 223, 305-330.	0.5	30
16	Comparison of nonlinear one- and two-way FFSI methods for the prediction of the symmetric response of a containership in waves. Ocean Engineering, 2020, 203, 107179.	4.3	30
17	The influence of fluid structure interaction modelling on the dynamic response of ships subject to collision and grounding. Marine Structures, 2021, 75, 102875.	3.8	28
18	Wave loads and flexible fluid-structure interactions: current developments and future directions. Ships and Offshore Structures, 2010, 5, 307-325.	1.9	27

Spyros E Hirdaris

#	Article	IF	CITATIONS
19	Accident susceptibility index for a passenger ship-a framework and case study. Reliability Engineering and System Safety, 2022, 218, 108145.	8.9	26
20	Uncertainties in long-term wave modelling. Marine Structures, 2022, 84, 103217.	3.8	20
21	Remote piloting in an intelligent fairway – A paradigm for future pilotage. Safety Science, 2020, 130, 104889.	4.9	18
22	Structural response analysis of slamming impact on free fall lifeboats. Marine Structures, 2017, 54, 112-126.	3.8	17
23	Comparison of numerical approaches for structural response analysis of passenger ships in collisions and groundings. Marine Structures, 2022, 81, 103125.	3.8	17
24	Benchmark study of global linear wave loads on a container ship with forward speed. Marine Structures, 2022, 84, 103162.	3.8	17
25	Global wave load combinations by cross-spectral methods. Marine Structures, 2012, 29, 131-151.	3.8	16
26	A comparative method for scaling SOLAS collision damage distributions based on ship crashworthiness – application to probabilistic damage stability analysis of a passenger ship. Ships and Offshore Structures, 2022, 17, 1498-1514.	1.9	15
27	A conforming unified finite element formulation for the vibration of thick beams and frames. International Journal for Numerical Methods in Engineering, 2005, 62, 579-599.	2.8	11
28	The influence of flexible fluid structure interactions on sway induced tank sloshing dynamics. Engineering Analysis With Boundary Elements, 2021, 131, 206-217.	3.7	11
29	A framework for onboard assessment and monitoring of flooding risk due to open watertight doors for passenger ships. Reliability Engineering and System Safety, 2022, 226, 108666.	8.9	11
30	Analysis of a Collision-Energy-Based Method for the Prediction of Ice Loading on Ships. Applied Sciences (Switzerland), 2019, 9, 4546.	2.5	10
31	Springing Analysis of a Passenger Ship in Waves. Journal of Marine Science and Engineering, 2020, 8, 492.	2.6	9
32	A two-way coupled FSI model for the rapid evaluation of accidental loads following ship hard grounding. Journal of Fluids and Structures, 2022, 112, 103589.	3.4	8
33	The influence of obliquely perforated dual-baffles on sway induced tank sloshing dynamics. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2021, 235, 905-920.	0.5	6
34	A machine learning method for the evaluation of hydrodynamic performance of floating breakwaters in waves. Ships and Offshore Structures, 0, , 1-15.	1.9	5
35	Development of Numerical Modelling Techniques for Composite Cylindrical Structures under External Pressure. Journal of Marine Science and Engineering, 2022, 10, 466.	2.6	5
36	A simplified fluid structure interaction model for the assessment of ship hard grounding. Journal of Marine Science and Technology, 2022, 27, 695-711.	2.9	5

Spyros E Hirdaris

#	Article	IF	CITATIONS
37	Time Domain Analysis of Springing and Whipping Responses Acting on a Large Container Ship. , 2011, , .		3
38	The Risks of Remote Pilotage in an Intelligent Fairway – preliminary considerations. , 2020, , 48-57.		3
39	An initial hierarchical systems structure for systemic hazard analysis of autonomous ships. , 2020, , 140-153.		2
40	Digitalization of High Speed Craft Design and Operation Challenges and Opportunities. Procedia Computer Science, 2022, 200, 566-576.	2.0	2
41	Loads on ships and offshore structures. Ships and Offshore Structures, 0, , 1-1.	1.9	1
42	Ship Dynamics. Journal of Marine Science and Engineering, 2021, 9, 105.	2.6	1
43	A nonlinear approach to the calculation of large amplitude ship motions and wave loads. , 2011, , 249-255.		1
44	Springing effect on the fatigue life of an 8000TEU container ship. , 2015, , 291-298.		1
45	Coupled CFD and FEA to Predict the Dynamic Structural Response of Modern Cruise Ship Deck Outfitting due to Wind-Induced Vibrations. , 2020, , .		1
46	Comparison of system modelling techniques for autonomous ship systems. , 2020, , 125-139.		1
47	A Fully Coupled Time-Domain BEM-FEM Method for the Prediction of Symmetric Hydroelastic Responses of Ships with Forward Speed. Shock and Vibration, 2022, 2022, 1-18.	0.6	1
48	Special Issue on the Recent Advances in Safe Maritime Operations under Extreme Conditions. Applied Sciences (Switzerland), 2021, 11, 5789.	2.5	0
49	NON LINEAR ANALYSIS OF SHIP MOTIONS AND LOADS IN LARGE AMPLITUDE WAVES. Transactions of the Royal Institution of Naval Architects Part A: International Journal of Maritime Engineering, 2021, 153, .	0.1	0