M-P Ginebra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4645892/publications.pdf Version: 2024-02-01

M-D CINERDA

#	Article	IF	CITATIONS
1	Combining 2D organic and 1D inorganic nanoblocks to develop free-standing hybrid nanomembranes for conformable biosensors. Journal of Nanostructure in Chemistry, 2023, 13, 507-517.	5.3	3
2	Translation of three-dimensional printing of ceramics in bone tissue engineering and drug delivery. MRS Bulletin, 2022, 47, 59-69.	1.7	2
3	Effectiveness of Direct Laser Interference Patterning and Peptide Immobilization on Endothelial Cell Migration for Cardio-Vascular Applications: An In Vitro Study. Nanomaterials, 2022, 12, 1217.	1.9	6
4	Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomaterialia, 2022, 145, 1-24.	4.1	10
5	Implementation of bactericidal topographies on biomimetic calcium phosphates and the potential effect of its reactivity. , 2022, 136, 212797.		6
6	3D printing with star-shaped strands: A new approach to enhance in vivo bone regeneration. , 2022, 137, 212807.		3
7	A multiparametric advection-diffusion reduced-order model for molecular transport in scaffolds for osteoinduction. Biomechanics and Modeling in Mechanobiology, 2022, 21, 1099-1115.	1.4	2
8	Thermosensitive hydrogels to deliver reactive species generated by cold atmospheric plasma: a case study with methylcellulose. Biomaterials Science, 2022, 10, 3845-3855.	2.6	10
9	Functionalized silk promotes cell migration into calcium phosphate cements by providing macropores and cell adhesion motifs. Ceramics International, 2022, 48, 31449-31460.	2.3	2
10	Cold atmospheric plasma enhances doxorubicin selectivity in metastasic bone cancer. Free Radical Biology and Medicine, 2022, 189, 32-41.	1.3	16
11	A microfluidic-based approach to investigate the inflammatory response of macrophages to pristine and drug-loaded nanostructured hydroxyapatite. Materials Today Bio, 2022, 16, 100351.	2.6	0
12	Multifunctional homogeneous calcium phosphate coatings: Toward antibacterial and cell adhesive titanium scaffolds. Surface and Coatings Technology, 2021, 405, 126557.	2.2	15
13	An Engineered Biomimetic Peptide Regulates Cell Behavior by Synergistic Integrin and Growth Factor Signaling. Advanced Healthcare Materials, 2021, 10, 2001757.	3.9	16
14	Chemically Diverse Multifunctional Peptide Platforms with Antimicrobial and Cell Adhesive Properties. ChemBioChem, 2021, 22, 839-844.	1.3	9
15	A versatile click chemistry-based approach for functionalizing biomaterials of diverse nature with bioactive peptides. Chemical Communications, 2021, 57, 982-985.	2.2	7
16	Plasma-Conditioned Liquids as Anticancer Therapies In Vivo: Current State and Future Directions. Cancers, 2021, 13, 452.	1.7	31
17	Quantification of Plasma-Produced Hydroxyl Radicals in Solution and their Dependence on the pH. Analytical Chemistry, 2021, 93, 3666-3670.	3.2	51
18	Osteosarcoma tissue-engineered model challenges oxidative stress therapy revealing promoted cancer stem cell properties. Free Radical Biology and Medicine, 2021, 164, 107-118.	1.3	26

#	Article	IF	CITATIONS
19	Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy. Journal of Clinical Medicine, 2021, 10, 893.	1.0	31
20	Selfâ€Healable and Ecoâ€Friendly Hydrogels for Flexible Supercapacitors. Advanced Sustainable Systems, 2021, 5, 2000273.	2.7	8
21	Biomimetic Peptides: An Engineered Biomimetic Peptide Regulates Cell Behavior by Synergistic Integrin and Growth Factor Signaling (Adv. Healthcare Mater. 7/2021). Advanced Healthcare Materials, 2021, 10, 2170032.	3.9	0
22	Computed tomography and histological evaluation of xenogenic and biomimetic bone grafts in three-wall alveolar defects in minipigs. Clinical Oral Investigations, 2021, 25, 6695-6706.	1.4	3
23	Evaluation of the effects of cold atmospheric plasma and plasma-treated liquids in cancer cell cultures. Nature Protocols, 2021, 16, 2826-2850.	5.5	43
24	α-tricalcium phosphate synthesis from amorphous calcium phosphate: structural characterization and hydraulic reactivity. Journal of Materials Science, 2021, 56, 13509-13523.	1.7	6
25	Peptidic biofunctionalization of laser patterned dental zirconia: A biochemical-topographical approach. Materials Science and Engineering C, 2021, 125, 112096.	3.8	16
26	Rheological characterisation of ceramic inks for 3D direct ink writing: A review. Journal of the European Ceramic Society, 2021, 41, 18-33.	2.8	141
27	3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments. Acta Biomaterialia, 2021, 134, 744-759.	4.1	23
28	Bioactivity and antibacterial properties of calcium- and silver-doped coatings on 3D printed titanium scaffolds. Surface and Coatings Technology, 2021, 421, 127476.	2.2	18
29	Remote Spatiotemporal Control of a Magnetic and Electroconductive Hydrogel Network via Magnetic Fields for Soft Electronic Applications. ACS Applied Materials & Interfaces, 2021, 13, 42486-42501.	4.0	11
30	Selectivity of direct plasma treatment and plasma-conditioned media in bone cancer cell lines. Scientific Reports, 2021, 11, 17521.	1.6	12
31	Maturation of biomimetic hydroxyapatite in physiological fluids: a physicochemical and proteomic study. Materials Today Bio, 2021, 12, 100137.	2.6	5
32	Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects. Acta Biomaterialia, 2021, 135, 689-704.	4.1	13
33	Hydrothermal processing of 3D-printed calcium phosphate scaffolds enhances bone formation in vivo: a comparison with biomimetic treatment. Acta Biomaterialia, 2021, 135, 671-688.	4.1	11
34	3D printing non-cylindrical strands: Morphological and structural implications. Additive Manufacturing, 2021, 46, 102129.	1.7	7
35	Zn-Mg and Zn-Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility. Bioactive Materials, 2021, 6, 4430-4446.	8.6	53
36	Solvent-cast direct-writing as a fabrication strategy for radiopaque stents. Additive Manufacturing, 2021, 48, 102392.	1.7	8

#	Article	IF	CITATIONS
37	Hybrid conducting alginate-based hydrogel for hydrogen peroxide detection from enzymatic oxidation of lactate. International Journal of Biological Macromolecules, 2021, 193, 1237-1248.	3.6	6
38	Injectable calcium phosphate foams for the delivery of Pitavastatin as osteogenic and angiogenic agent. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 760-770.	1.6	11
39	Synthetic bone graft substitutes: Calcium-based biomaterials. , 2020, , 125-157.		11
40	Evolution of microstructure and residual stresses in gradually ground/polished 3Y-TZP. Journal of the European Ceramic Society, 2020, 40, 1582-1591.	2.8	17
41	Electroresponsive Alginate-Based Hydrogels for Controlled Release of Hydrophobic Drugs. ACS Biomaterials Science and Engineering, 2020, 6, 6228-6240.	2.6	32
42	Development of novel dual-action coatings with osteoinductive and antibacterial properties for 3D-printed titanium implants. Surface and Coatings Technology, 2020, 403, 126381.	2.2	22
43	Enhanced Generation of Reactive Species by Cold Plasma in Gelatin Solutions for Selective Cancer Cell Death. ACS Applied Materials & Interfaces, 2020, 12, 47256-47269.	4.0	35
44	Influence of grinding/polishing on the mechanical, phase stability and cell adhesion properties of yttria-stabilized zirconia. Journal of the European Ceramic Society, 2020, 40, 4304-4314.	2.8	9
45	Titanium Scaffolds by Direct Ink Writing: Fabrication and Functionalization to Guide Osteoblast Behavior. Metals, 2020, 10, 1156.	1.0	12
46	Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. Journal of Materials Chemistry B, 2020, 8, 9404-9427.	2.9	71
47	Conductive, self-healable and reusable poly(3,4-ethylenedioxythiophene)-based hydrogels for highly sensitive pressure arrays. Journal of Materials Chemistry C, 2020, 8, 8654-8667.	2.7	36
48	Time to kick-start text mining for biomaterials. Nature Reviews Materials, 2020, 5, 553-556.	23.3	20
49	Use of threeâ€dimensionally printed βâ€tricalcium phosphate synthetic bone graft combined with recombinant human bone morphogenic proteinâ€2 to treat a severe radial atrophic nonunion in a Yorkshire terrier. Veterinary Surgery, 2020, 49, 1626-1631.	0.5	12
50	The Devices, Experimental Scaffolds, and Biomaterials Ontology (DEB): A Tool for Mapping, Annotation, and Analysis of Biomaterials Data. Advanced Functional Materials, 2020, 30, 1909910.	7.8	11
51	Investigating the atmospheric pressure plasma jet modification of a photo-crosslinkable hydrogel. Polymer, 2020, 192, 122308.	1.8	14
52	Effect of Allogeneic Cell-Based Tissue-Engineered Treatments in a Sheep Osteonecrosis Model. Tissue Engineering - Part A, 2020, 26, 993-1004.	1.6	10
53	Cold Plasma-Treated Ringer's Saline: A Weapon to Target Osteosarcoma. Cancers, 2020, 12, 227.	1.7	57
54	Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds. Scientific Reports, 2020, 10, 7068.	1.6	51

#	Article	IF	CITATIONS
55	The effect of biomimetic calcium deficient hydroxyapatite and sintered β-tricalcium phosphate on osteoimmune reaction and osteogenesis. Acta Biomaterialia, 2019, 96, 605-618.	4.1	95
56	Production of reactive species in alginate hydrogels for cold atmospheric plasma-based therapies. Scientific Reports, 2019, 9, 16160.	1.6	41
57	The Effect of the Thermosensitive Biodegradable PLGA–PEG–PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement. International Journal of Molecular Sciences, 2019, 20, 391.	1.8	26
58	Effect of calcium phosphate heparinization on the in vitro inflammatory response and osteoclastogenesis of human blood precursor cells. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1217-1229.	1.3	4
59	Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review. Frontiers of Chemical Science and Engineering, 2019, 13, 238-252.	2.3	159
60	A Dual Molecular Biointerface Combining RGD and KRSR Sequences Improves Osteoblastic Functions by Synergizing Integrin and Cell-Membrane Proteoglycan Binding. International Journal of Molecular Sciences, 2019, 20, 1429.	1.8	27
61	Control of stem cell response and bone growth on biomaterials by fully non-peptidic integrin selective ligands. Biomaterials Science, 2019, 7, 1281-1285.	2.6	13
62	Impact of Biomimicry in the Design of Osteoinductive Bone Substitutes: Nanoscale Matters. ACS Applied Materials & Interfaces, 2019, 11, 8818-8830.	4.0	44
63	Single-step pulsed electrodeposition of calcium phosphate coatings on titanium for drug delivery. Surface and Coatings Technology, 2019, 358, 266-275.	2.2	33
64	RGD Mutation of the Heparin Binding II Fragment of Fibronectin for Guiding Mesenchymal Stem Cell Behavior on Titanium Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 3666-3678.	4.0	15
65	Cements as bone repair materials. , 2019, , 233-271.		16
66	The Influence of Physicochemical Properties of Biomimetic Hydroxyapatite on the In Vitro Behavior of Endothelial Progenitor Cells and Their Interaction with Mesenchymal Stem Cells. Advanced Healthcare Materials, 2019, 8, e1801138.	3.9	12
67	Vertical Bone Regeneration with Synthetic Biomimetic Calcium Phosphate onto the Calvaria of Rats. Tissue Engineering - Part C: Methods, 2019, 25, 1-11.	1.1	7
68	In vivo efficiency of antimicrobial inorganic bone grafts in osteomyelitis treatments. Materials Science and Engineering C, 2019, 97, 84-95.	3.8	18
69	Heparinization of Beta Tricalcium Phosphate: Osteoâ€immunomodulatory Effects. Advanced Healthcare Materials, 2018, 7, 1700867.	3.9	21
70	All-in-one trifunctional strategy: A cell adhesive, bacteriostatic and bactericidal coating for titanium implants. Colloids and Surfaces B: Biointerfaces, 2018, 169, 30-40.	2.5	48
71	Recombinant fibronectin fragment III8-10/polylactic acid hybrid nanofibers enhance the bioactivity of titanium surface. Nanomedicine, 2018, 13, 899-912.	1.7	5
72	Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture. Acta Biomaterialia, 2018, 79, 135-147.	4.1	98

#	Article	IF	CITATIONS
73	Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks. Acta Biomaterialia, 2018, 75, 451-462.	4.1	53
74	Effects of Molecular Weight and Concentration of Poly(Acrylic Acid) on Biomimetic Mineralization of Collagen. ACS Biomaterials Science and Engineering, 2018, 4, 2758-2766.	2.6	57
75	In vitro response of mesenchymal stem cells to biomimetic hydroxyapatite substrates: A new strategy to assess the effect of ion exchange. Acta Biomaterialia, 2018, 76, 319-332.	4.1	38
76	Effect of nano-structural properties of biomimetic hydroxyapatite on osteoimmunomodulation. Biomaterials, 2018, 181, 318-332.	5.7	94
77	Bioceramics and bone healing. EFORT Open Reviews, 2018, 3, 173-183.	1.8	112
78	Plasma polymerized bioceramics for drug delivery: Do surface changes alter biological behaviour?. European Polymer Journal, 2018, 107, 25-33.	2.6	7
79	Focus Ion Beam/Scanning Electron Microscopy Characterization of Osteoclastic Resorption of Calcium Phosphate Substrates. Tissue Engineering - Part C: Methods, 2017, 23, 118-124.	1.1	13
80	Biomimetic Versus Sintered Calcium Phosphates: The <i>In Vitro</i> Behavior of Osteoblasts and Mesenchymal Stem Cells. Tissue Engineering - Part A, 2017, 23, 1297-1309.	1.6	45
81	Influence of Si substitution on the reactivity of α-tricalcium phosphate. Materials Science and Engineering C, 2017, 75, 816-821.	3.8	12
82	Calcium Phosphate Foams: Potential Scaffolds for Bone Tissue Modeling in Three Dimensions. Methods in Molecular Biology, 2017, 1612, 79-94.	0.4	4
83	Regenerating Bone via Multifunctional Coatings: The Blending of Cell Integration and Bacterial Inhibition Properties on the Surface of Biomaterials. ACS Applied Materials & Interfaces, 2017, 9, 21618-21630.	4.0	77
84	Plasma-induced selectivity in bone cancer cells death. Free Radical Biology and Medicine, 2017, 110, 72-80.	1.3	82
85	Effect of dynamic loading versus static loading on the frictional behavior of a UHMWPE pin in artificial biolubricants. Biosurface and Biotribology, 2017, 3, 35-44.	0.6	2
86	Osteoclast differentiation from human blood precursors on biomimetic calcium-phosphate substrates. Acta Biomaterialia, 2017, 50, 102-113.	4.1	39
87	Cell adhesive peptides functionalized on CoCr alloy stimulate endothelialization and prevent thrombogenesis and restenosis. Journal of Biomedical Materials Research - Part A, 2017, 105, 973-983.	2.1	18
88	Evaluation of bone formation in calcium phosphate scaffolds with <i>μ</i> CT-method validation using SEM. Biomedical Materials (Bristol), 2017, 12, 065005.	1.7	9
89	Direct Laser Interference Patterning of CoCr Alloy Surfaces to Control Endothelial Cell and Platelet Response for Cardiovascular Applications. Advanced Healthcare Materials, 2017, 6, 1700327.	3.9	47
90	In vitro degradation of calcium phosphates: Effect of multiscale porosity, textural properties and composition. Acta Biomaterialia, 2017, 60, 81-92.	4.1	60

#	Article	IF	CITATIONS
91	Elastic properties and strain-to-crack-initiation of calcium phosphate bone cements: Revelations of a high-resolution measurement technique. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 428-437.	1.5	28
92	A novel strategy to enhance interfacial adhesion in fiber-reinforced calcium phosphate cement. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 495-503.	1.5	23
93	Towards the cell-instructive bactericidal substrate: exploring the combination of nanotopographical features and integrin selective synthetic ligands. Scientific Reports, 2017, 7, 16363.	1.6	28
94	Osteoinduction by Foamed and 3D-Printed Calcium Phosphate Scaffolds: Effect of Nanostructure and Pore Architecture. ACS Applied Materials & Interfaces, 2017, 9, 41722-41736.	4.0	153
95	Critical review: Injectability of calcium phosphate pastes and cements. Acta Biomaterialia, 2017, 50, 1-19.	4.1	192
96	Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation. Applied Surface Science, 2017, 393, 82-92.	3.1	42
97	Self-hardening and thermoresponsive alpha tricalcium phosphate/pluronic pastes. Acta Biomaterialia, 2017, 49, 563-574.	4.1	36
98	EDTA and NTA Effectively Tune the Mineralization of Calcium Phosphate from Bulk Aqueous Solution. Biomimetics, 2017, 2, 24.	1.5	5
99	Extent and mechanism of phase separation during the extrusion of calcium phosphate pastes. Journal of Materials Science: Materials in Medicine, 2016, 27, 29.	1.7	20
100	Modulation of release kinetics by plasma polymerization of ampicillin-loaded β-TCP ceramics. Journal Physics D: Applied Physics, 2016, 49, 304004.	1.3	18
101	Surface guidance of stem cell behavior: Chemically tailored co-presentation of integrin-binding peptides stimulates osteogenic differentiation in vitro and bone formation in vivo. Acta Biomaterialia, 2016, 43, 269-281.	4.1	51
102	Regulating the antibiotic drug release from β-tricalcium phosphate ceramics by atmospheric plasma surface engineering. Biomaterials Science, 2016, 4, 1454-1461.	2.6	23
103	Compressive, diametral tensile and biaxial flexural strength of cutting-edge calcium phosphate cements. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 617-627.	1.5	47
104	Brushite foams—the effect of <scp>T</scp> ween® 80 and <scp>P</scp> luronic® <scp>F</scp> â€127 on foam porosity and mechanical properties. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 67-77.	1.6	19
105	Design of calcium phosphate scaffolds with controlled simvastatin release by plasma polymerisation. Polymer, 2016, 92, 170-178.	1.8	25
106	Formation of calcium phosphate nanostructures under the influence of self-assembling hybrid elastin-like-statherin recombinamers. RSC Advances, 2016, 6, 31225-31234.	1.7	17
107	lon-doping as a strategy to modulate hydroxyapatite nanoparticle internalization. Nanoscale, 2016, 8, 1595-1607.	2.8	38
108	Impact of Porosity and Electrolyte Composition on the Surface Charge of Hydroxyapatite Biomaterials. ACS Applied Materials & Amp; Interfaces, 2016, 8, 908-917.	4.0	23

#	Article	IF	CITATIONS
109	Changes in the drug release pattern of fresh and set simvastatin-loaded brushite cement. Materials Science and Engineering C, 2016, 58, 88-96.	3.8	12
110	In Vivo Osteogenic Potential of Biomimetic Hydroxyapatite/Collagen Microspheres: Comparison with Injectable Cement Pastes. PLoS ONE, 2015, 10, e0131188.	1.1	16
111	Inflammatory Response to Nano- and Microstructured Hydroxyapatite. PLoS ONE, 2015, 10, e0120381.	1.1	38
112	Hybrid Calcium Phosphate Neuron-Like Structures under the Microscope. Microscopy and Microanalysis, 2015, 21, 1539-1540.	0.2	0
113	Osteoblastic cell response to spark plasma-sintered zirconia/titanium cermets. Journal of Biomaterials Applications, 2015, 29, 813-823.	1.2	16
114	Evaluation of a porosity measurement method for wet calcium phosphate cements. Journal of Biomaterials Applications, 2015, 30, 526-536.	1.2	13
115	Nanotopological-tailored calcium phosphate cements for the odontogenic stimulation of human dental pulp stem cells through integrin signaling. RSC Advances, 2015, 5, 63363-63371.	1.7	6
116	Multiple characterization study on porosity and pore structure of calcium phosphate cements. Acta Biomaterialia, 2015, 28, 205-214.	4.1	48
117	The effect of unsaturated fatty acid and triglyceride oil addition on the mechanical and antibacterial properties of acrylic bone cements. Journal of Biomaterials Applications, 2015, 30, 279-289.	1.2	21
118	Porosity prediction of calcium phosphate cements based on chemical composition. Journal of Materials Science: Materials in Medicine, 2015, 26, 210.	1.7	5
119	Different Organization of Type I Collagen Immobilized on Silanized and Nonsilanized Titanium Surfaces Affects Fibroblast Adhesion and Fibronectin Secretion. ACS Applied Materials & Interfaces, 2015, 7, 20667-20677.	4.0	27
120	Drug delivery from injectable calcium phosphate foams by tailoring the macroporosity–drug interaction. Acta Biomaterialia, 2015, 12, 250-259.	4.1	53
121	In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams. Acta Biomaterialia, 2015, 12, 242-249.	4.1	39
122	Collagen-functionalised titanium surfaces for biological sealing of dental implants: Effect of immobilisation process on fibroblasts response. Colloids and Surfaces B: Biointerfaces, 2014, 122, 601-610.	2.5	72
123	Low-Pressure Plasma Treatment of Polylactide Fibers for Enhanced Mechanical Performance of Fiber-Reinforced Calcium Phosphate Cements. Plasma Processes and Polymers, 2014, 11, 694-703.	1.6	22
124	Injectable biomedical foams for bone regeneration. , 2014, , 281-312.		9
125	Transportation Conditions for Prompt Use of <i>Ex Vivo</i> Expanded and Freshly Harvested Clinical-Grade Bone Marrow Mesenchymal Stromal/Stem Cells for Bone Regeneration. Tissue Engineering - Part C: Methods, 2014, 20, 239-251.	1.1	39
126	Development of a low pH cementitious material to enlarge bioreceptivity. Construction and Building Materials, 2014, 54, 485-495.	3.2	28

#	Article	IF	CITATIONS
127	Role of porosity and pore architecture in the <i>in vivo</i> bone regeneration capacity of biodegradable glass scaffolds. Journal of Biomedical Materials Research - Part A, 2014, 102, 1767-1773.	2.1	38
128	Magnesium phosphate cements for endodontic applications with improved longâ€ŧerm sealing ability. International Endodontic Journal, 2014, 47, 127-139.	2.3	54
129	Bioactivation of calcium deficient hydroxyapatite with foamed gelatin gel. A new injectable self-setting bone analogue. Journal of Materials Science: Materials in Medicine, 2014, 25, 283-295.	1.7	13
130	Calcium phosphate neuron-like structures: a rare case or a common structure?. Journal of Materials Chemistry B, 2014, 2, 2020.	2.9	4
131	Development and Characterization of Biphasic Hydroxyapatite/βâ€ <scp>TCP</scp> Cements. Journal of the American Ceramic Society, 2014, 97, 1065-1073.	1.9	63
132	Calcium phosphate glasses: Silanation process and effect on the bioactivity behavior of glass-PMMA composites. , 2014, 102, 205-213.		4
133	Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks. Journal of Materials Chemistry B, 2014, 2, 5378-5386.	2.9	92
134	Biomimetic treatment on dental implants for short-term bone regeneration. Clinical Oral Investigations, 2014, 18, 59-66.	1.4	34
135	Dynamic cell culture on calcium phosphate microcarriers for bone tissue engineering applications. Journal of Tissue Engineering, 2014, 5, 204173141454396.	2.3	24
136	Micro- and nanostructured hydroxyapatite-collagen microcarriers for bone tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 353-361.	1.3	34
137	Relevance of microstructure for the early antibiotic release of fresh and pre-set calcium phosphate cements. Acta Biomaterialia, 2013, 9, 8403-8412.	4.1	47
138	Injectable collagen/α-tricalcium phosphate cement: collagen–mineral phase interactions and cell response. Journal of Materials Science: Materials in Medicine, 2013, 24, 381-393.	1.7	38
139	Antimicrobial properties and dentin bonding strength of magnesium phosphate cements. Acta Biomaterialia, 2013, 9, 8384-8393.	4.1	50
140	Methods for the preparation of doxycycline-loaded phb micro- and nano-spheres. European Polymer Journal, 2013, 49, 3501-3511.	2.6	26
141	Fibrinogen nanofibers for guiding endothelial cell behavior. Biomaterials Science, 2013, 1, 1065.	2.6	44
142	Relevance of the setting reaction to the injectability of tricalcium phosphate pastes. Acta Biomaterialia, 2013, 9, 6188-6198.	4.1	72
143	Calcium phosphate cements loaded with basic fibroblast growth factor: Delivery and <i>in vitro</i> cell response. Journal of Biomedical Materials Research - Part A, 2013, 101A, 923-931.	2.1	28
144	Assessment of Protein Entrapment in Hydroxyapatite Scaffolds by Size Exclusion Chromatography. Biointerphases, 2012, 7, 37.	0.6	8

#	Article	IF	CITATIONS
145	Polymeric additives to enhance the functional properties of calcium phosphate cements. Journal of Tissue Engineering, 2012, 3, 204173141243955.	2.3	116
146	Injectable calcium-phosphate-based composites for skeletal bone treatments. Biomedical Materials (Bristol), 2012, 7, 024113.	1.7	37
147	Calcium phosphate cements as drug delivery materials. Advanced Drug Delivery Reviews, 2012, 64, 1090-1110.	6.6	445
148	Osteoblast-like cellular response to dynamic changes in the ionic extracellular environment produced by calcium-deficient hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2012, 23, 2509-2520.	1.7	47
149	Electrochemical microelectrodes for improved spatial and temporal characterization of aqueous environments around calcium phosphate cements. Acta Biomaterialia, 2012, 8, 386-393.	4.1	4
150	Silicon-stabilized α-tricalcium phosphate and its use in a calcium phosphate cement: Characterization and cell response. Acta Biomaterialia, 2012, 8, 1169-1179.	4.1	98
151	Variation of the superelastic properties and nickel release from original and reused NiTi orthodontic archwires. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 6, 113-119.	1.5	21
152	Dry mechanosynthesis of nanocrystalline calcium deficient hydroxyapatite: Structural characterisation. Journal of Alloys and Compounds, 2011, 509, 7389-7394.	2.8	54
153	Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: early fluorapatite formation in a phosphate-containing solution. International Endodontic Journal, 2011, 44, 938-949.	2.3	45
154	Maternal emotional distress in pregnancy and delivery of a smallâ€forâ€gestational age infant. Acta Obstetricia Et Gynecologica Scandinavica, 2011, 90, 1267-1273.	1.3	5
155	Comparison of a low molecular weight and a macromolecular surfactant as foaming agents for injectable self setting hydroxyapatite foams: Polysorbate 80 versus gelatine. Materials Science and Engineering C, 2011, 31, 1498-1504.	3.8	44
156	Fibre-reinforced calcium phosphate cements: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1658-1671.	1.5	161
157	Mechanical behaviour of synthetic surgical meshes: Finite element simulation of the herniated abdominal wall. Acta Biomaterialia, 2011, 7, 3905-3913.	4.1	87
158	Ion reactivity of calcium-deficient hydroxyapatite in standard cell culture media. Acta Biomaterialia, 2011, 7, 4242-4252.	4.1	87
159	Reduction of Ni release and improvement of the friction behaviour of NiTi orthodontic archwires by oxidation treatments. Journal of Materials Science: Materials in Medicine, 2011, 22, 1119-1125.	1.7	33
160	Cell response to collagen-calcium phosphate cement scaffolds investigated for nonviral gene delivery. Journal of Materials Science: Materials in Medicine, 2011, 22, 887-897.	1.7	19
161	Novel soybean/gelatine-based bioactive and injectable hydroxyapatite foam: Material properties and cell response. Acta Biomaterialia, 2011, 7, 1780-1787.	4.1	38
162	Porous hydroxyapatite and gelatin/hydroxyapatite microspheres obtained by calcium phosphate cement emulsion. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 97B, 156-166.	1.6	74

#	Article	IF	CITATIONS
163	Novel magnesium phosphate cements with high early strength and antibacterial properties. Acta Biomaterialia, 2011, 7, 1853-1861.	4.1	249
164	Self-hardening calcium deficient hydroxyapatite/gelatine foams for bone regeneration. Journal of Materials Science: Materials in Medicine, 2010, 21, 863-869.	1.7	45
165	Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration. Acta Biomaterialia, 2010, 6, 876-885.	4.1	85
166	New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomaterialia, 2010, 6, 2863-2873.	4.1	258
167	Investigation of the hydroxyapatite obtained as hydrolysis product of α-tricalcium phosphate by transmission electron microscopy. CrystEngComm, 2010, 12, 3318.	1.3	29
168	Materials Surface Effects on Biological Interactions. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 233-252.	0.5	14
169	Development of Provisional Extracellular Matrix on Biomaterials Interface: Lessons from In Vitro Cell Culture. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 19-43.	0.5	3
170	Cements as bone repair materials. , 2009, , 271-308.		16
171	Quantitative analysis of the resorption and osteoconduction of a macroporous calcium phosphate bone cement for the repair of a critical size defect in the femoral condyle. Veterinary Journal, 2009, 179, 264-272.	0.6	34
172	Selective Targeting of ER Exit Sites Supports Axon Development. Traffic, 2009, 10, 1669-1684.	1.3	49
173	Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications. Acta Biomaterialia, 2009, 5, 2752-2762.	4.1	166
174	Evaluation of the influence of the addition of biodegradable polymer matrices in the formulation of self-curing polymer systems for biomedical purposes. Acta Biomaterialia, 2009, 5, 2953-2962.	4.1	18
175	Biomaterials for Tissue Engineering of Hard Tissues. , 2009, , 1-42.		4
176	Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes. Acta Biomaterialia, 2008, 4, 1924-1933.	4.1	67
177	Surface characterization and cell response of a PLA/CaP glass biodegradable composite material. Journal of Biomedical Materials Research - Part A, 2008, 85A, 477-486.	2.1	46
178	Wet or dry mechanochemical synthesis of calcium phosphates? Influence of the water content on DCPD–CaO reaction kinetics. Acta Biomaterialia, 2008, 4, 378-386.	4.1	68
179	Discerning the Role of Topography and Ion Exchange in Cell Response of Bioactive Tissue Engineering Scaffolds. Tissue Engineering - Part A, 2008, 14, 1341-1351.	1.6	61
180	Calcium phosphate bone cements. , 2008, , 206-230.		21

#	Article	IF	CITATIONS
181	Effect of Ionic Exchange on Osteoblast Behaviour on Bioactive Tissue Engineering Substrates. Key Engineering Materials, 2007, 361-363, 1051-1054.	0.4	0
182	Foamed Î ² -Tricalcium Phosphate Scaffolds. Key Engineering Materials, 2007, 361-363, 323-326.	0.4	6
183	Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam. Journal of Biomedical Materials Research - Part A, 2007, 80A, 351-361.	2.1	86
184	In vivo evaluation of an injectable Macroporous Calcium Phosphate Cement. Journal of Materials Science: Materials in Medicine, 2007, 18, 353-361.	1.7	70
185	Estudio experimental de la osteosustitución con biomateriales cerámicos formulados como cementos óseos. Archivos De Medicina Veterinaria, 2007, 39, .	0.2	0
186	Bioceramics as nanomaterials. Nanomedicine, 2006, 1, 91-106.	1.7	48
187	Calcium phosphate cements: Competitive drug carriers for the musculoskeletal system?â~†. Biomaterials, 2006, 27, 2171-2177.	5.7	177
188	Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials, 2006, 27, 5326-5334.	5.7	123
189	Biodegradable and semi-biodegradable composite hydrogels as bone substitutes: morphology and mechanical characterization. Journal of Materials Science: Materials in Medicine, 2006, 17, 447-454.	1.7	30
190	Calcium phosphate cements as bone drug delivery systems: A review. Journal of Controlled Release, 2006, 113, 102-110.	4.8	588
191	Transparent micro- and nanopatterned poly(lactic acid) for biomedical applications. Journal of Biomedical Materials Research - Part A, 2006, 76A, 781-787.	2.1	36
192	Material characterization andin vivo behavior of silicon substituted α-tricalcium phosphate cement. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 76B, 424-431.	1.6	52
193	Development of aÂBiodegradable Composite Scaffold for Bone Tissue Engineering: Physicochemical, Topographical, Mechanical, Degradation, and Biological Properties. Advances in Polymer Science, 2006, , 209-231.	0.4	78
194	Processing and mechanical properties of hydroxyapatite pieces obtained by the gelcasting method. Journal of the European Ceramic Society, 2005, 25, 375-383.	2.8	51
195	Acrylic bone cements modified with β-TCP particles encapsulated with poly(ethylene glycol). Biomaterials, 2005, 26, 4309-4316.	5.7	40
196	Static mechanical properties of hydroxyapatite (HA) powder-filled acrylic bone cements: Effect of type of HA powder. , 2005, 72B, 345-352.		38
197	In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomaterialia, 2005, 1, 411-419.	4.1	90
198	Surface characterization of completely degradable composite scaffolds. Journal of Materials Science: Materials in Medicine, 2005, 16, 1125-1130.	1.7	21

#	Article	IF	CITATIONS
199	Study of the reactivity and in vitro bioactivity of Sr-substituted α-TCP cements. Journal of Materials Science: Materials in Medicine, 2005, 16, 993-1001.	1.7	104
200	Injectability of a Macroporous Calcium Phosphate Cement. Key Engineering Materials, 2005, 284-286, 157-160.	0.4	8
201	Cell Behaviour of Calcium Phosphate Bone Cement Modified with a Protein-Based Foaming Agent. Key Engineering Materials, 2005, 284-286, 117-120.	0.4	2
202	In Vivo Behavior of Calcium Phosphate Glasses with Controlled Solubility. Key Engineering Materials, 2005, 284-286, 893-896.	0.4	6
203	Fabrication of Low Temperature Hydroxyapatite Foams. Key Engineering Materials, 2004, 254-256, 1001-1004.	0.4	4
204	Development of a New Calcium Phosphate Glass Ceramic Porous Scaffold for Guided Bone Regeneration. Key Engineering Materials, 2004, 254-256, 945-948.	0.4	2
205	Obtention of Silicate-Substituted Calcium Deficient Hydroxyapatite by Dry Mechanosynthesis. Key Engineering Materials, 2004, 254-256, 107-110.	0.4	5
206	Injectable Composite Hydrogels for Orthopaedic Applications. Mechanical and Morphological Analysis. Key Engineering Materials, 2004, 254-256, 485-488.	0.4	4
207	Wear Behaviour of the Pair Ti–6Al–4V–UHMWPE of Acrylic Bone Cements Containing Different Radiopaque Agents. Journal of Biomaterials Applications, 2004, 18, 305-319.	1.2	6
208	Physicochemical, Mechanical, and Biological Properties of Bone Cements Prepared with Functionalized Methacrylates. Journal of Biomaterials Applications, 2004, 19, 147-161.	1.2	12
209	Propagation of fatigue cracks in acrylic bone cements containing different radiopaque agents. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2004, 218, 167-172.	1.0	11
210	Development and cell response of a new biodegradable composite scaffold for guided bone regeneration. Journal of Materials Science: Materials in Medicine, 2004, 15, 419-422.	1.7	77
211	Dry mechanochemical synthesis of hydroxyapatites from DCPD and CaO: influence of instrumental parameters on the reaction kinetics. Biomaterials, 2004, 25, 1151-1158.	5.7	50
212	Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis. Biomaterials, 2004, 25, 3453-3462.	5.7	283
213	Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an $\hat{I}\pm$ -TCP paste. Biomaterials, 2004, 25, 3671-3680.	5.7	259
214	New macroporous calcium phosphate glass ceramic for guided bone regeneration. Biomaterials, 2004, 25, 4233-4241.	5.7	116
215	Estudio biomecánico del tornillo canulado de Herbert en el tratamiento de la pseudoartrosis de clavÃcula. Revista Española De CirugÃa Ortopédica Y TraumatologÃa, 2004, 48, 45-48.	0.1	0
216	Calcium phosphate bone substitutes. Medical Journal of Malaysia, 2004, 59 Suppl B, 65-6.	0.2	0

#	Article	IF	CITATIONS
217	Dry mechanochemical synthesis of hydroxyapatites from dicalcium phosphate dihydrate and calcium oxide: A kinetic study. Journal of Biomedical Materials Research Part B, 2003, 67A, 927-937.	3.0	24
218	Cellular response to calcium phosphate glasses with controlled solubility. Journal of Biomedical Materials Research Part B, 2003, 67A, 1009-1015.	3.0	92
219	A radiopaque polymeric matrix for acrylic bone cements. , 2003, 64B, 44-55.		21
220	The effect of cooling rate on the cyclic deformation of β-annealed Ti–6Al–4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 349, 150-155.	2.6	51
221	Physicochemical Degradation of Titania‣tabilized Soluble Phosphate Glasses for Medical Applications. Journal of the American Ceramic Society, 2003, 86, 1345-1352.	1.9	122
222	Effect of Albumen as Protein-Based Foaming Agent in a Calcium Phosphate Bone Cement. Key Engineering Materials, 2003, 254-256, 253-256.	0.4	7
223	Wollastonite Coatings on Zirconia Ceramics. Key Engineering Materials, 2003, 254-256, 379-382.	0.4	1
224	Influence of Water Addition on the Kinetics of Mechanochemical Synthesis of Hydroxyapatites from DCPD+CaO. Key Engineering Materials, 2003, 254-256, 931-936.	0.4	2
225	Hydrothermal method for preparing calcium phosphate monoliths. Materials Research, 2003, 6, 395-401.	0.6	16
226	Partially resorbable acrylic bone cements based on self-curing acrylic/phosphate glass formulations. Journal of Applied Biomaterials and Biomechanics, 2003, 1, 48-57.	0.4	0
227	Improvement of the Stability and Mechanical Properties of Resorbable Phosphate Glasses by the Addition of TiO ₂ . Key Engineering Materials, 2002, 218-220, 275-278.	0.4	10
228	Physical and Mechanical Behavior of Zirconia-Hydroxyapatite Ceramics after Aging in Simulated Body Fluid. Key Engineering Materials, 2002, 218-220, 161-164.	0.4	1
229	Acrylic Bone Cements. , 2002, , 569-588.		6
230	Hydroxyapatite ceramic bodies with tailored mechanical properties for different applications. Journal of Biomedical Materials Research Part B, 2002, 60, 159-166.	3.0	86
231	Mechanical performance of acrylic bone cements containing different radiopacifying agents. Biomaterials, 2002, 23, 1873-1882.	5.7	124
232	Acrylic-phosphate glasses composites as self-curing controlled delivery systems of antibiotics. Journal of Materials Science: Materials in Medicine, 2002, 13, 1251-1257.	1.7	14
233	Surface hardening by anodizing and heat treatments of Ti6Al4V alloys for articular prostheses. Bio-Medical Materials and Engineering, 2002, 12, 271-81.	0.4	2
234	Improvement of the Mechanical Properties of an α-TCP Cement by the Addition of a Polymeric Drug Containing Salicylic Acid. Key Engineering Materials, 2001, 192-195, 781-784.	0.4	0

#	Article	IF	CITATIONS
235	Mechanical Behaviour of New Zirconia-Hydroxyapatite Ceramic Materials. Key Engineering Materials, 2001, 192-195, 151-154.	0.4	9
236	Formation of α-Widmanstäten structure: effects of grain size and cooling rate on the Widmanstäten morphologies and on the mechanical properties in Ti6Al4V alloy. Journal of Alloys and Compounds, 2001, 329, 142-152.	2.8	229
237	Mechanical and rheological improvement of a calcium phosphate cement by the addition of a polymeric drug. Journal of Biomedical Materials Research Part B, 2001, 57, 113-118.	3.0	123
238	Propagación de grietas por fatiga de cementos óseos acrÃlicos. Influencia de los agentes radiopacos. Revista De Metalurgia, 2001, 37, 166-170.	0.1	0
239	Dry Mechanochemical Synthesis of Apatites and other Calcium Phosphates. Key Engineering Materials, 2000, 192-195, 115-118.	0.4	5
240	Structure and Mechanical Properties of Cortical Bone. Pergamon Materials Series, 2000, 4, 33-71.	0.2	4
241	Chemical Durability and Mechanical Properties of Calcium Phosphate Glasses with the Addition of Fe ₂ O ₃ , TiO ₂ and ZnO. Key Engineering Materials, 2000, 192-195, 621-624.	0.4	14
242	An Experimental Approach to the Study of the Rheology Behaviour of Synthetic Bone Calcium Phosphate Cements. Key Engineering Materials, 2000, 192-195, 777-780.	0.4	17
243	Applied Aspects of Calcium Phosphate Bone Cement Application. , 2000, , 253-260.		3
244	Modified acrylic bone cement with high amounts of ethoxytriethyleneglycol methacrylate. Biomaterials, 1999, 20, 453-463.	5.7	35
245	Influence of the modification of P/L ratio on a new formulation of acrylic bone cement. Biomaterials, 1999, 20, 465-474.	5.7	37
246	Radiopaque acrylic cements prepared with a new acrylic derivative of iodo-quinoline. Biomaterials, 1999, 20, 2047-2053.	5.7	46
247	Zirconia-toughened hydroxyapatite ceramic obtained by wet sintering. Journal of Materials Science: Materials in Medicine, 1999, 10, 715-719.	1.7	41
248	Calcium phosphate bone cements for clinical applications. Part I: solution chemistry. Journal of Materials Science: Materials in Medicine, 1999, 10, 169-176.	1.7	222
249	Production and characterization of new calcium phosphate bone cements in the CaHPO4-alpha-Ca3(PO4)2 system: pH, workability and setting times. Journal of Materials Science: Materials in Medicine, 1999, 10, 223-230.	1.7	89
250	Improvement of the mechanical properties of acrylic bone cements by substitution of the radio-opaque agent. Journal of Materials Science: Materials in Medicine, 1999, 10, 733-737.	1.7	27
251	Calcium phosphate bone cements for clinical applications. Part II: precipitate formation during setting reactions. Journal of Materials Science: Materials in Medicine, 1999, 10, 177-183.	1.7	131
252	Effect of porosity and environment on the mechanical behavior of acrylic bone cement modified with acrylonitrile-butadiene-styrene particles: I. Fracture toughness. , 1999, 48, 121-127.		50

#	Article	IF	CITATIONS
253	Effect of porosity and environment on the mechanical behavior of acrylic bone cement modified with acrylonitrile-butadiene-styrene particles: Part II. Fatigue crack propagation. , 1999, 48, 128-134.		31
254	Modeling of the Hydrolysis of αâ€īricalcium Phosphate. Journal of the American Ceramic Society, 1999, 82, 2808-2812.	1.9	110
255	Effect of porosity and environment on the mechanical behavior of acrylic bone cement modified with acrylonitrile-butadiene-styrene particles: I. Fracture toughness. , 1999, 48, 121.		1
256	COMPARATIVE STUDY OF THE SETTING REACTION KINETIC OF SEVERAL APATITIC CALCIUM PHOSPHATE BONE CEMENTS. , 1999, , .		5
257	Acrylic bone cements incorporating polymeric active components derived from salicylic acid: curing parameters and properties. Journal of Materials Science: Materials in Medicine, 1998, 9, 679-685.	1.7	18
258	Improvement of the mechanical properties of new calcium phosphate bone cements in the CaHPO4-?-Ca3(PO4)2 system: Compressive strength and microstructural development. Journal of Biomedical Materials Research Part B, 1998, 41, 560-567.	3.0	96
259	The cement setting reaction in the CaHPO4-?-Ca3(PO4)2 system: An X-ray diffraction study. , 1998, 42, 403-406.		38
260	Osteotransductive bone cements. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1998, 212, 427-435.	1.0	144
261	Setting Reaction and Hardening of an Apatitic Calcium Phosphate Cement. Journal of Dental Research, 1997, 76, 905-912.	2.5	313
262	Application of tertiary amines with reduced toxicity to the curing process of acrylic bone cements. , 1997, 34, 129-136.		55
263	Influence of the particle size of the powder phase in the setting and hardening behaviour of a calcium phosphate cement. , 1997, , 481-484.		6
264	Kinetic study of the setting reaction of a calcium phosphate bone cement. , 1996, 32, 367-374.		130
265	New aspects of the effect of size and size distribution on the setting parameters and mechanical properties of acrylic bone cements. Biomaterials, 1996, 17, 509-516.	5.7	108
266	Relationship between the morphology of PMMA particles and properties of acrylic bone cements. Journal of Materials Science: Materials in Medicine, 1996, 7, 375-379.	1.7	15
267	Development of a method to measure the period of swelling of calcium phosphate cements. Journal of Materials Science Letters, 1996, 15, 1004.	0.5	39
268	Dimensional and thermal behaviour of calcium phosphate cements during setting compared to PMMA bone cements. Journal of Materials Science Letters, 1995, 14, 4-5.	0.5	27
269	In vivo behaviour of three calcium phosphate cements and a magnesium phosphate cement. Journal of Materials Science: Materials in Medicine, 1995, 6, 272-278.	1.7	50
270	Effect of various additives and temperature on some properties of an apatitic calcium phosphate cement. Journal of Materials Science: Materials in Medicine, 1995, 6, 612-616.	1.7	60

#	Article	IF	CITATIONS
271	Mechanical properties of a modified acrylic bone cement with etoxytriethyleneglycol monomethacrylate. Journal of Materials Science: Materials in Medicine, 1995, 6, 793-798.	1.7	6
272	The effects of temperature on the behaviour of an apatitic calcium phosphate cement. Journal of Materials Science: Materials in Medicine, 1995, 6, 857-860.	1.7	59
273	Structural Transformations in Ti-6Al-4V Alloy. European Physical Journal Special Topics, 1995, 05, C2-317-C2-322.	0.2	1
274	Compliance of a Calcium Phosphate Cement with Some Short-term Clinical Requirements. , 1994, , 273-278.		15
275	Effective formulations for the preparation of calcium phosphate bone cements. Journal of Materials Science: Materials in Medicine, 1994, 5, 164-170.	1.7	134
276	Preparation and properties of some magnesium-containing calcium phosphate cements. Journal of Materials Science: Materials in Medicine, 1994, 5, 103-107.	1.7	8
277	Compliance of an apatitic calcium phosphate cement with the short-term clinical requirements in bone surgery, orthopaedics and dentistry. Clinical Materials, 1994, 17, 99-104.	0.5	89
278	Common ion effect on some calcium phosphate cements. Clinical Materials, 1994, 16, 99-103.	0.5	42
279	Chloride- and alkali-containing calcium phosphates as basic materials to prepare calcium phosphate cements. Biomaterials, 1994, 15, 1019-1023.	5.7	10
280	Applied Aspects of Calcium Phosphate Bone Cement Application. , 0, , 253-260.		11

17