
Michael P Jankowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4645673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hyaluronan homeostasis and its role in pain and muscle stiffness. PM and R, 2022, 14, 1490-1496.	1.6	9
2	Genetic and epigenetic mechanisms influencing acute to chronic postsurgical pain transitions in pediatrics: Preclinical to clinical evidence. Canadian Journal of Pain, 2022, 6, 85-107.	1.7	5
3	Disruption of Hyaluronic Acid in Skeletal Muscle Induces Decreased Voluntary Activity via Chemosensitive Muscle Afferent Sensitization in Male Mice. ENeuro, 2022, 9, ENEURO.0522-21.2022.	1.9	5
4	Purinergic signaling in peripheral nervous system glial cells. Glia, 2021, 69, 1837-1851.	4.9	19
5	Early Life Nociception is Influenced by Peripheral Growth Hormone Signaling. Journal of Neuroscience, 2021, 41, 4410-4427.	3.6	14
6	In silico Identification of Key Factors Driving the Response of Muscle Sensory Neurons to Noxious Stimuli. Frontiers in Neuroscience, 2021, 15, 719735.	2.8	2
7	Integrated analysis of the molecular pathogenesis of FDXR-associated disease. Cell Death and Disease, 2020, 11, 423.	6.3	21
8	Systemic Delivery of AAV-Fdxr Mitigates the Phenotypes of Mitochondrial Disorders in Fdxr Mutant Mice. Molecular Therapy - Methods and Clinical Development, 2020, 18, 84-97.	4.1	4
9	Systemic administration of AAV-Slc25a46 mitigates mitochondrial neuropathy in Slc25a46â^'/â^' mice. Human Molecular Genetics, 2020, 29, 649-661.	2.9	19
10	A dual role for peripheral GDNF signaling in nociception and cardiovascular reflexes in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 698-707.	7.1	20
11	Single-cell q-PCR derived expression profiles of identified sensory neurons. Molecular Pain, 2019, 15, 174480691988449.	2.1	26
12	The evolution and multi-molecular properties of NF1 cutaneous neurofibromas originating from C-fiber sensory endings and terminal Schwann cells at normal sites of sensory terminations in the skin. PLoS ONE, 2019, 14, e0216527.	2.5	15
13	Sex differences and mechanisms of muscle pain. Current Opinion in Physiology, 2019, 11, 1-6.	1.8	24
14	Systemic growth hormone deficiency causes mechanical and thermal hypersensitivity during early postnatal development. IBRO Reports, 2019, 6, 111-121.	0.3	10
15	Sex differences in primary muscle afferent sensitization following ischemia and reperfusion injury. Biology of Sex Differences, 2018, 9, 2.	4.1	26
16	A histone deacetylase 3–dependent pathway delimits peripheral myelin growth and functional regeneration. Nature Medicine, 2018, 24, 338-351.	30.7	76
17	Interleukin $1^{\hat{1}2}$ inhibition contributes to the antinociceptive effects of voluntary exercise on ischemia/reperfusion-induced hypersensitivity. Pain, 2018, 159, 380-392.	4.2	21
18	Tonic ATP-mediated growth suppression in peripheral nerve glia requires arrestin-PP2 and is evaded in NF1. Acta Neuropathologica Communications, 2018, 6, 127.	5.2	9

MICHAEL P JANKOWSKI

#	Article	IF	CITATIONS
19	Increased Expression of Transcription Factor SRY-box-Containing Gene 11 (Sox11) Enhances Neurite Growth by Regulating Neurotrophic Factor Responsiveness. Neuroscience, 2018, 382, 93-104.	2.3	16
20	Cutaneous TRPM8-expressing sensory afferents are a small population of neurons with unique firing properties. Physiological Reports, 2017, 5, e13234.	1.7	25
21	Growth hormone regulates the sensitization of developing peripheral nociceptors during cutaneous inflammation. Pain, 2017, 158, 333-346.	4.2	22
22	A new role of growth hormone and insulin-like growth factor receptor type 1 in neonatal inflammatory nociception: response to commentary. Pain Reports, 2017, 2, e609.	2.7	0
23	Peripheral Mechanisms of Ischemic Myalgia. Frontiers in Cellular Neuroscience, 2017, 11, 419.	3.7	37
24	Upregulation of P2Y1 in neonatal nociceptors regulates heat and mechanical sensitization during cutaneous inflammation. Molecular Pain, 2017, 13, 174480691773025.	2.1	5
25	Deletion of the murine ATP/UTP receptor P2Y2 alters mechanical and thermal response properties in polymodal cutaneous afferents. Neuroscience, 2016, 332, 223-230.	2.3	7
26	Zeb2 recruits HDAC–NuRD to inhibit Notch and controls Schwann cell differentiation and remyelination. Nature Neuroscience, 2016, 19, 1060-1072.	14.8	113
27	Dual Modulation of Nociception and Cardiovascular Reflexes during Peripheral Ischemia through P2Y1 Receptor-Dependent Sensitization of Muscle Afferents. Journal of Neuroscience, 2016, 36, 19-30.	3.6	36
28	Muscle IL1Â Drives Ischemic Myalgia via ASIC3-Mediated Sensory Neuron Sensitization. Journal of Neuroscience, 2016, 36, 6857-6871.	3.6	38
29	Sensitization of Group III and IV Muscle Afferents in the Mouse After Ischemia and Reperfusion Injury. Journal of Pain, 2014, 15, 1257-1270.	1.4	28
30	The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism. Nature Communications, 2014, 5, 4993.	12.8	61
31	Age-Dependent Sensitization of Cutaneous Nociceptors during Developmental Inflammation. Molecular Pain, 2014, 10, 1744-8069-10-34.	2.1	26
32	Comprehensive phenotyping of group III and IV muscle afferents in mouse. Journal of Neurophysiology, 2013, 109, 2374-2381.	1.8	111
33	Dynamic Changes in Heat Transducing Channel TRPV1 Expression Regulate Mechanically Insensitive, Heat Sensitive C-Fiber Recruitment after Axotomy and Regeneration. Journal of Neuroscience, 2012, 32, 17869-17873.	3.6	19
34	Purinergic receptor P2Y1 regulates polymodal C-fiber thermal thresholds and sensory neuron phenotypic switching during peripheral inflammation. Pain, 2012, 153, 410-419.	4.2	47
35	The Functional Organization of Cutaneous Low-Threshold Mechanosensory Neurons. Cell, 2011, 147, 1615-1627.	28.9	602
36	The ADP Receptor P2Y1 is Necessary for Normal Thermal Sensitivity in Cutaneous Polymodal Nociceptors. Molecular Pain, 2011, 7, 1744-8069-7-13.	2.1	24

#	Article	IF	CITATIONS
37	Cutaneous C-polymodal Fibers Lacking TRPV1 are Sensitized to Heat following Inflammation, but Fail to Drive Heat Hyperalgesia in the Absence of TPV1 Containing C-heat Fibers. Molecular Pain, 2010, 6, 1744-8069-6-58.	2.1	37
38	Enhanced Artemin/GFRα3 Levels Regulate Mechanically Insensitive, Heat-Sensitive C-Fiber Recruitment after Axotomy and Regeneration. Journal of Neuroscience, 2010, 30, 16272-16283.	3.6	35
39	Sensitization of Cutaneous Nociceptors after Nerve Transection and Regeneration: Possible Role of Target-Derived Neurotrophic Factor Signaling. Journal of Neuroscience, 2009, 29, 1636-1647.	3.6	73
40	Mrgprd Enhances Excitability in Specific Populations of Cutaneous Murine Polymodal Nociceptors. Journal of Neuroscience, 2009, 29, 8612-8619.	3.6	135
41	Sox11 transcription factor modulates peripheral nerve regeneration in adult mice. Brain Research, 2009, 1256, 43-54.	2.2	135